
M A N N I N G

Luis Atencio

Constructor functions

- Define object templates.

- Require manual

configuration of prototype

references.

Classes

- Implement perceivable inheritance.

- Take advantage of new features

such as private and/or static

properties.

OLOO

- Object-oriented does not

mean class-oriented.

- Treats objects as peers

instead of parent-child.

Closures

- Allow functions to

reference lexically

scoped variables.

- Necessary to implement

most FP techniques.

Higher-order functions

- Allow functions to behave like

objects.

- Pass functions as arguments

and as return values.

compose/map/Functor

- Assemble composable

programs from simpler ones.

- Functors are mappable

objects (such as Array).

- Mappables compose the

way functions do.

ECMAScript Modules

- Standarize the module

system for both client

and server.

- Use familiar import/export

syntax.

Symbols

- Implement static hooking.

- Some well-known symbols:

@@iterator

@@species

@@toPrimitive

Proxy/reflect

- Implement dynamic hooking.

- Override/redefine the

behavior of an object.

Async programming

- Works with user input,

HTTP requests,

filesystem, and so on.

- Supported by an

event loop/callack queue

architecture.

Promises

- Streamline async programming.

- Reduce callback hell.

Iterators/generators

- Provide a way to

enumerate a data structure

or intermediate results

of a funnction.

- Use a common protocol

{value: , done: }.any boolean

Mixins

- Implement dynamic

object extension.

- Compose whole objects

from smaller ones.

flatMap/ADT/Monad

- Deal with side effects

in a pure manner.

- Implement railway-driven

programming.

Decorators

- Weave custom code to

run before and/or after

an object’s methods.

- Annotate a class/object

declaratively.

Observable streams

- Compose asynchronous

or event-based programs.

- Handle finite or

infinite sequences of data.

Objects

Functions

Code

Data

- Automates prototype

setup.

The Joy of JavaScript

The Joy of
JavaScript

LUIS ATENCIO

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Frances Lefkowitz
Technical development editor: Peter Perlepes

Manning Publications Co. Review editor: Aleks Dragosavljević
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Proofreader: Melody Dolab
Shelter Island, NY 1196 Technical proofreader: Jahred Love

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617295867
Printed in the United States of America

www.manning.com

 To my children, Luke and Matthew, and my wife, Ana, for being my support pillars
in life and helping me at every step of this journey. To all of my family for their love

and support. Thank you.

brief contents
1 ■ JavaScript reloaded 1

PART 1 OBJECTS ...21

2 ■ Inheritance-based object modeling 23

3 ■ Linked, compositional object models 42

PART 2 FUNCTIONS...71

4 ■ Writing composable, pure code 73

5 ■ Higher-kinded composition 114

PART 3 CODE. ...155

6 ■ ECMAScript Modules 157

7 ■ Hooked on metaprogramming 183

PART 4 DATA223

8 ■ Linear async flows 225

9 ■ Streams programming 260
vii

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xxi
about the cover illustration xxii

1 JavaScript reloaded 1
1.1 Evolving JavaScript 4
1.2 Objects 5
1.3 Functions 7
1.4 Code 12
1.5 Data 13
1.6 Sample application: Blockchain 16

PART 1 OBJECTS ...21

2 Inheritance-based object modeling 23
2.1 Reviewing prototypal inheritance 24

Property resolution process 27 ■ Differential inheritance 29

2.2 Constructor functions 30
Functions as templates 30 ■ Sharing properties by using
constructors and prototypes 31

2.3 Class-based inheritance 36
ix

CONTENTSx
3 Linked, compositional object models 42
3.1 Types of object links 43

Implicit 43 ■ Explicit 44

3.2 OLOO 45
3.3 Understanding Object.assign 50

Object.assign uncovered 51 ■ Assignment vs definition 53

3.4 Assembling objects using mixin composition 54
Anatomy of a mixin 60 ■ Multiple inheritance and
linearization 63 ■ Composing objects using Object.assign and the
spread operator 65

3.5 Applying shared mixins to multiple objects 66

PART 2 FUNCTIONS...71

4 Writing composable, pure code 73
4.1 What is functional programming? 75

Functions as data 76 ■ The functional way 78

4.2 Functional versus imperative at a glance 79
4.3 Composition: The functional way 81

Working with side effects 84 ■ Decomposing complex code 87

4.4 Currying and closures 90
Curried function application 91 ■ The curry and composition
dynamic duo 96

4.5 Working with immutable objects 100
4.6 Point-free coding 104
4.7 Imperative to functional transformation 106
4.8 Native function chains 111

5 Higher-kinded composition 114
5.1 Closing over data types 117
5.2 New Array APIs: {flat, flatMap} 122

Array.prototype.flat 122 ■ Array.prototype.flatMap 122

5.3 The map/compose correspondence 123
5.4 Universal contracts 124

Functors 124 ■ Monads 127

CONTENTS xi
5.5 Contextual validation with higher-order functions 131
Kinds of ADTs 131 ■ Choices 132 ■ Modeling success and
failure with the Validation monad 134 ■ Composing with
monads 138 ■ Higher-kinded composition with Validation 142
Point-free coding with monads 144 ■ Reducing complex data
structures 146 ■ Third-party integration 149

5.6 Higher-kinded composition with method extraction and
dynamic binding 150

PART 3 CODE..155

6 ECMAScript Modules 157
6.1 Past state of affairs 158
6.2 Module patterns 160

Object namespaces 161 ■ Immediately Invoked Function Expressions
(IIFEs) 163 ■ IIFE mixins 164 ■ Factory functions 165

6.3 Static vs. dynamic module systems 167
6.4 ESM basics 170

Path specifiers 171 ■ Exporting 172 ■ Importing 174
A new extension in town 177

6.5 Benefits of ESM for tooling 178
Dead-code elimination and tree-shaking 178 ■ Faster property
lookups 180 ■ Type-friendliness 181

7 Hooked on metaprogramming 183
7.1 Common uses of metaprogramming in JavaScript 184
7.2 JavaScript symbols 186
7.3 Symbol registries 188

Local registry 188 ■ Global registry 189

7.4 Practical application of symbols 190
Hidden properties 190 ■ Interoperability 191
Serialization 196

7.5 Well-known symbols 198
@@toStringTag 198 ■ @@isConcatSpreadable 199
@@species 200 ■ @@toPrimitive 203 ■ @@iterator 205

7.6 Dynamic introspection and weaving 211
Proxy objects 212 ■ The Reflect API 215 ■ Additional use cases 216

7.7 Implementing method decorators 218

CONTENTSxii
PART 4 DATA ..223

8 Linear async flows 225
8.1 Architecture at a glance 226
8.2 JavaScript as promised 228

Principle of data locality 231 ■ Are promises algebraic? 231
Fluent chaining 234 ■ Promises in the wild 242

8.3 API review: Promise combinators 244
Promise.all 246 ■ Promise.race 247 ■ Promise.allSettled 247
Promise.any 248

8.4 async made easy 249
8.5 async iteration 252
8.6 Top-level await 257

9 Streams programming 260
9.1 Iterables and Iterators 262

Iterable protocol 262 ■ Iterator protocol 263 ■ Examples 263

9.2 Generators 266
To return or to yield 266 ■ Creating iterable objects 267
Async generators 269

9.3 Working with data streams 273
What is a stream? 274 ■ Implementing a streamable array 275

9.4 Welcoming a new native: Observable 278
What is an Observable? 279 ■ Creating custom observables 281
Building your own reactive toolkit 282 ■ Observable mixin
extension 288 ■ Representing push streams with generators 290
Pipeable operators 295 ■ Streamifying objects 297 ■ Dynamic
streamification 300

9.5 Closing thoughts 304

appendix A Configuring Babel 306
appendix B Typed JavaScript<T> 308

index 325

preface
I learned to program computers in a traditional, academic way. The universities I
attended based their curricula primarily on class-oriented languages such as Java, C++,
and C#. When I came out of those programs, my brain was trained to think that classes
were the best (maybe even only) way to design programs and that anything else would
be an abomination.

 Years later, like any other developer in the world, I stumbled onto JavaScript—I
should say jQuery, because at the time, jQuery was JavaScript. JavaScript was diametri-
cally opposite to most of what I had learned. I struggled with every fundamental
aspect of programming, including representing domain models, encapsulating behav-
ior and data into logical modules, and dealing with events and asynchronous func-
tions. I said to myself, Fine, let’s use jQuery and a slew of third-party libraries to “fix
the language” and forget all about this.

 But JavaScript didn’t need fixing: I needed to get fixed. I knew I couldn’t get away
from it. Because JavaScript was pretty much everywhere, it was only a matter of time
before I’d stumble onto it again, so I decided to explore it more deeply. Learning about
its prototype mechanism and closures showed me the true meaning of object-oriented
programming. When Alan Kay invented this term in the early 2000s, he wanted to bring
together concepts such as message-passing (objects passing or sending messages to
other objects), encapsulation (exposing only what’s necessary), and dynamic linking
(resolving properties of an object by name at runtime). Unlike all the other languages
I’d learned, JavaScript had these principles deeply rooted in its design; more important,
xiii

PREFACExiv
the concepts were easily accessible to developers. Then it dawned on me that I finally
understood programming.

 Armed with newfound motivation, I continued learning about JavaScript and
found higher-order functions, which opened my eyes to functional programming and
composable software. Suddenly, programming wasn’t frustrating; it was a joy. This real-
ization propelled my career as an author of books such as Functional Programming in
JavaScript (Manning, 2016), RxJS in Action (Manning, 2017), and now The Joy of JavaScript
(Manning, 2021).

 This book is for developers who, like me, have had the good fortune to learn about
amazing features such as closures, prototypes, and higher-order functions, and want
to take them to the next level so that they can enjoy working with JavaScript every sin-
gle day. The Joy of JavaScript shows what the language has to offer on its own, without
any third-party libraries and frameworks. Due to the sheer number of topics surround-
ing JavaScript, this book doesn’t spend much time digging into basic concepts (but
offers good resources for them); neither is it a guide to writing ECMAScript 2019,
2020, and so on. Rather, it gives you a close-up view of exciting topics, trends, and
techniques that will allow you to master areas of the language that you probably didn’t
know existed. As a bonus, the book introduces you to some additions to the language
that may land in the years to come. It’s valuable to learn about these proposals so that
you’ll understand where the language is headed and how it’s evolving.

 Writing this book helped me get through these uncertain and anxious times, and I
sincerely hope that you find the same joy in reading it that I did writing it. While work-
ing on this manuscript, I gained a fresh perspective on programming as a whole, and I
hope that it does the same for you.

acknowledgments
This book was a lot of work. But I believe that all that work resulted in a fine book that
nicely complements what’s already out there, and I hope that you will think so as well.

 I’d like to thank quite a few people for helping me along the way.
 First and foremost, I want to thank my wife, Ana. You’ve always supported me,

always patiently taking care of things (including our two amazing boys, Luke and Mat-
thew) while I struggled to get this book done. You always made me believe I could fin-
ish it. I love you.

 Next, I’d like to acknowledge my longtime, flawless editor at Manning, Frances
Lefkowitz. Thank you for working with me, guiding me every step of the way, and mak-
ing the writing process delightful (not to mention bearable). Your commitment to the
quality of this book made it better for everyone who will read it. Thanks as well to all
the other folks at Manning who worked with me on the production and promotion of
the book: Deirdre Hiam, and Melody Dolab. It was truly a team effort.

 I’d also like to thank the reviewers who took the time to read my manuscript at var-
ious stages during its development and who provided invaluable feedback: Al Peze-
wski, Alberto Ciarlanti, Amit Lamba, Birnou Sébarte, Daniel Posey, Daniel Bretoi,
Dary Merckens, Dennis Reil, Didier Garcia, Edwin Kwok, Foster Haines, Francesco
Strazzullo, Gabriel Wu, Jacob Romero, Joe Justesen, Jon Guenther, Julien Pohie, Kevin
Norman D. Kapchan, Kimberly Winston-Jackson, Konstantinos Leimonis, Jahred Love,
Lora Vardarova, Matteo Gildone, Miranda Whurr, Nate Clark, Pietro Maffi, Rance
Shields, Ray Booysen, Richard Michaels, Sachin Singhi, Satej Kumar Sahu, Srihari
Sridharan, Ubaldo Pescatore, and Víctor M. Pérez.
xv

ACKNOWLEDGMENTSxvi
 Special thanks to Gleb Bahmutov (https://twitter.com/bahmutov), vice president
of engineering at Cypress.io (https://www.cypress.io), and James Sinclair (https://
twitter.com/jrsinclair) for their insightful review of the book and code. Gleb and
James are amazing JavaScript advocates, and I highly recommend that you follow their
work. Thanks also to my brother, Carlos, who took the time to read the book and
offered lots of important, constructive feedback.

 Finally, I’m standing on the shoulders of giants. Thank you, Kyle Simpson, for
teaching us JavaScript the right way in your book series You Don’t Know JS (https://
github.com/getify/You-Dont-Know-JS), and to Eric Elliot for his unique views on com-
posable software (https://leanpub.com/composingsoftware). Also, thanks to Brendan
Eich, without whom JavaScript would not exist. You make work a joy!

https://twitter.com/bahmutov
https://www.cypress.io
https://twitter.com/jrsinclair
https://twitter.com/jrsinclair
https://github.com/getify/You-Dont-Know-JS
https://github.com/getify/You-Dont-Know-JS
https://leanpub.com/composingsoftware

about this book
JavaScript fatigue is real—not only because programmers have more than a million
NPM packages to choose from, but also because they have an equal amount of online
resources to turn to for information and guidance. The Joy of JavaScript was written to
synthesize some of the most cutting-edge and exciting developments in the JavaScript
language, to help you go beyond the basics and reach the next level. The book begins
by comparing and contrasting object-oriented modeling techniques that highlight
JavaScript’s prototype chains and dynamic linking. Then it puts the spotlight on
higher-order functions and on using JavaScript’s functional programming capabilities
to arrive at truly composable software—a theme that in one way or another permeates
the entire book. Next, the books tackles static and dynamic separation of concerns
with modules and metaprogramming, respectively. The book ends with a discussion of
ways to handle asynchronous flows of data streams effectively. My hope is that this
four-part journey will help turn fatigue into joy.

Who should read this book
The Joy of JavaScript is for professional developers who already possess a solid founda-
tion and are looking to expand their breadth of knowledge into other parts of the
language--including aspects they may have seen or heard about but never had the oppor-
tunity or time to learn. Although the book targets intermediate to advanced develop-
ers, it gently introduces some of the most difficult topics, so it’s also suitable for a
beginner enthusiast who is passionate and willing to catch up on the side.
xvii

ABOUT THIS BOOKxviii
How this book is organized
Each chapter contributes to the book’s goal of showing how to build up software from
simple, composable pieces. The chapters are grouped in four parts, with each part
looking at JavaScript from a different angle: objects, functions, code, and data. The
book’s four parts cover nine chapters and should be read in order, as each chapter
and part builds on the previous one. To give you a fuller idea of what’s in store, here’s
a summary of each part.

Part 1: Objects

The first part sheds light on JavaScript’s object system. Syntactical support for class
declarations gives you a clean, simple way to establish inheritance relationships in
your domain model so that you can take advantage of proper data encapsulation and
create highly cohesive, well-structured domains. Despite many advances that added
class-oriented artifacts (such as classes, private properties, and inheritance), JavaScript
is far from being a class-oriented language; in reality, it’s quite the opposite. The
underlying prototype mechanism makes JavaScript’s object system incredibly mallea-
ble, versatile, and far more dynamic than that of other languages.

 This part exposes you to techniques that help you build and instantiate your
domain model entities, understanding the pros and cons of each approach. In this
part, you’ll learn that although classes have a place in JavaScript, they are not the only
ways to model your objects and certainly don’t reflect the way JavaScript works. To be
proficient in the language, you must understand how the object system works.

Part 2: Functions

After defining the shape of our objects in the first part, in part 2 we connect them by
using pure functions and composition. Functions bring the fun to The Joy of JavaScript.
JavaScript has powerful functional programming capabilities that make functions the
main units of computation. Believe it or not, functions have always been the strongest
parts of JavaScript. The language’s support for higher-order functions is the key to
writing modular, composable, and maintainable software.

 In this part, you will learn how to use functional programming (FP) principles cen-
tered on immutability, purity, and algebraic data types (ADT) to drive the business
logic of your application forward. You place functions front and center in your design
to take advantage of JavaScript’s strongest feature: higher-order functions. By this
point, you’ll be well versed in modern JavaScript idioms, and you’ll have taken a peek
at slick new language features such as the pipeline and bind operators.

Part 3: Code

An area in which JavaScript was lacking was a standardized, official module system.
Many attempts were made over the years to solve this problem, but nothing worked
well across client/server platforms. By borrowing the best from all these attempts,
JavaScript introduced the ECMAScript Modules (ESM) system—aka ES6 modules.

ABOUT THIS BOOK xix
This static module system allows the JavaScript runtime to perform lots of optimiza-
tions and makes build tools smarter, enabling them to introspect and analyze the
structure of your code to create the most optimal distributions.

 Modules are not the only ways to separate reusable pieces of code. In addition,
you’ll learn about JavaScript’s standard APIs that hook into your data dynamically,
known as Proxy and Reflect. These APIs allow you to separate concerns like a pro
and dynamically introduce cross-cutting policies such as tracing, logging, and perfor-
mance counters without modifying or polluting your main application’s logic.

Part 4: Data

The web evolves rapidly. The reality of modern software architecture is that everything
is distributed and API-driven nowadays. As the language of the web, JavaScript comes
with powerful constructs, APIs, and syntax to meet your asynchronous and stream-
based programming needs. In this part, you’ll learn about promises, async/await,
async iterators, async generators, observable streams, and much more.

About the code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to clearly separate it from ordinary text.

 When it comes to parsing out the code, here are are some things to keep in mind.
 To examine the contents of a variable or object property, this book often places

that variable or property reference followed by an inline comment (//) to show its
value. In these cases, (//) means equals or returns. Here’s an example:

proxy.foo; // 'bar'

When referring to a property accessible from a constructor function’s prototype, as in
Function.protototype.call, the # symbol is used in place of prototype references,
like this: Function#call.

 All code samples assume that JavaScript is in strict mode ("use strict";). If you
don’t know what this term means, visit http://mng.bz/goaE.

 Occasionally, arrow functions are used to improve legibility, especially for func-
tions that are meant to be anonymous or that fit in a single line.

 To keep code samples short, this book often omits unnecessary details such as code
that has been shown before or code that the reader is assumed to understand without
much effort. In these cases, an inline comment is followed by an ellipsis, (//...).

 In many cases, the original source code has been reformatted; I’ve added line breaks
and reworked indentation to accommodate the available page space in the book.

 The code that accompanies this book is in line with real-world coding but is meant
to be simple, contrived to avoid additional complexity. Its only purpose is teaching, so
it’s not meant to be used as is in any production system.

http://mng.bz/goaE

ABOUT THIS BOOKxx
 Any time a nonofficial future part of the language is used, Babel is used to
transpile that code to standard JavaScript. This book doesn’t cover Babel, but appen-
dix A provides a brief introduction.

 Source code for the examples in this book is hosted in a public GitHub repository
and is available for download from the publisher’s website at https://www.manning
.com/books/the-joy-of-javascript. To run each chapter’s listings, you have two options:
download and install Node.js v14 or later to run the code locally, or use a minimal
Docker configuration (provided) that configures a virtual environment with Node.js
14 and contains all the required project configurations. Docker is convenient if you
don’t want to or can’t upgrade your environment. The Docker sandbox ensures that
all the code works regardless of your system configuration or even which operating
system you use. You can sign up for and download a Docker engine for your specific
OS at https://www.docker.com/products/docker-desktop.

Other online resources
■ You Don’t Know JS, by Kyle Simpson (https://github.com/getify/You-Dont-Know-JS)
■ Composable Software, by Eric Elliot (https://leanpub.com/composingsoftware)
■ Mozilla Developer Network (https://developer.mozilla.org/en-US)

https://www.manning.com/books/the-joy-of-javascript
https://www.manning.com/books/the-joy-of-javascript
https://www.manning.com/books/the-joy-of-javascript
https://www.docker.com/products/docker-desktop
https://github.com/getify/You-Dont-Know-JS
https://leanpub.com/composingsoftware
https://developer.mozilla.org/en-US

about the author
Luis Atencio (@luijar) is a principal cloud engineer for Citrix
Systems in Fort Lauderdale, Florida. He has a B.S. and an M.S.
in Computer Science and now works full-time developing and
architecting cloud web applications with JavaScript and Java.
Luis is involved in the community and has presented on several
occasions at global conferences and local meetups. When he is
not coding, he writes a developer blog (https://medium.com/
@luijar) that focuses on software engineering. He has written
several articles for PHPArch and DZone. Luis is also the author
of Functional Programming in JavaScript (Manning, 2016) and
co-author of RxJS in Action (Manning, 2017).
xxi

https://medium.com/@luijar
https://medium.com/@luijar

about the cover illustration
The figure on the cover of The Joy of JavaScript is captioned “Groenlandais,” or Green-
lander. The illustration is taken from a collection of dress costumes from various
countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents
Pays, published in France in 1797. Each illustration is finely drawn and colored by
hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxii

JavaScript reloaded
Any application that can be written in JavaScript, will eventually be written in JavaScript.

—Jeff Atwood

It’s an amazing time to be a JavaScript developer. Today, JavaScript developers can
write code that runs virtually anywhere from tablets, smartphones, desktops, bots, and
cloud platforms to the Internet of Things, such as toasters, refrigerators, thermostats,

This chapter covers
 Evaluating the key aspects of day-to-day coding:

objects, functions, code, and data

 Comparing prototype- and delegation-based
object models

 Understanding the composability of functions
and types

 Achieving clear separation of concerns through
modularity and metaprogramming

 Using promises and streams programming to
create unidirectional data pipelines

 Introducing the sample blockchain application
1

2 CHAPTER 1 JavaScript reloaded
and even spacesuits! Also, we can program all tiers of an application stack, from the
client and server, all the way down to the database. The world is at our fingertips.

 Despite JavaScript’s resounding popularity, most developers—even those who use
it every day—still struggle to decide how to approach writing a new application. Most
of the time, you or your organization will have a prearranged framework of choice,
which gives you a good starting point. But even in these situations, frameworks only
get you so far; business-domain logic (done in plain JavaScript coding) will always be
the most difficult and uncertain part of the equation—one that you can’t throw a
library at to do. For these cases, it’s important to have a good grasp of the language’s
syntax, the features it has to offer, and the paradigms it supports.

 Most general-purpose programming languages typically have a recommended way
of solving a certain type of problem. Java and similar languages are hard-set on classes
to represent your business model, for example. With JavaScript, however, there are
many more options to consider: functions, object literals, creational APIs, and even
classes. Because JavaScript glues the web together, not only in browsers and mobile
devices, but also increasingly in the server, it’s continuously evolving to meet the
demands of diverse developer communities and rise to the new challenges imposed by
these (sometimes opposite) environments. Examples of these challenges include
managing asynchronous data originating from a user clicking buttons to performing
lower-level file I/O and breaking complex parts of your business logic into simple,
maintainable modules that can be shared and used across clients and servers. These
problems are unique.

 In addition, when we use JavaScript at scale, we also need to concern ourselves with
how to instantiate objects from proper abstractions that match our way of reasoning,
decomposing complex algorithms into simpler, reusable functions and handling
potentially infinite streams of data. All these tasks require good design skills so that
the code is simple to reason about and easy to maintain.

 That is where The Joy of JavaScript comes in. The goal of this book is to help you
identify and work with the different features of the language so that you become a
well-rounded JavaScript professional who understands how expert developers are
using JavaScript. The topics covered will give you enough information to allow you to
focus on and master what you need to tackle today’s and tomorrow’s challenges. The
book will also prepare you to use some of the new features that might be coming into
the language in the coming years, including pipeline and bind operators, throw
expressions, and observables. My aim is to make you a better, more productive pro-
grammer so that you can do more with less. After a few chapters—and certainly by the
end of the book—you should be writing even leaner and more elegant code than you
are already writing. In short, you’ll emerge from this book with a batch of new tools
and techniques at your disposal for more effective and efficient programming,
whether you are writing code for the frontend or the backend.

 Many years ago, JavaScript development wasn’t particularly associated with “joy.” It
was cumbersome to manage deep object hierarchies, for example, or to package your

3

application into modules that would work across environments. The problem of
implementing cross-platform, cross-vendor compatible code, plus the lack of tool sup-
port, made lots of developers cringe at the idea of having to write or maintain Java-
Script code for a living. But that’s changed; in fact, it’s quite the opposite.

 Fortunately, we’re now in the modern days of JavaScript development, which
means several things:

 First, we can closely monitor JavaScript’s steady evolution with a well-defined,
fast-paced, task group called TC39 that pushes new language features every
year, all in the open and transparently. This creates both excitement and angst,
because it inevitably forces you to rethink or throw away old habits and get
ready for what’s coming. Not all developers embrace change well or keep an
open mind, but I hope that you do.

 Second, the days of copy-paste programming are long behind us, and gone with
them is the stigma of having Script in the name as somehow describing an infe-
rior language. This sentiment was a global one many years ago, but that’s no
longer the case. The JavaScript ecosystem is among the most vibrant and cutting-
edge ecosystems, and today, JavaScript developers rank among the highest-paid
professionals in the industry.

 Finally, the misconception that a JavaScript developer is a jQuery, React, Angu-
lar, Vue, Svelte, or <name-your-framework> developer is fading. You’re a Java-
Script developer—period. The decision to use any of these frameworks or libraries
is yours to make. By using good practices and learning how to properly use the
wide spectrum of tools that JavaScript gives you, plain-vanilla JavaScript is power-
ful enough to let your creativity run wild and contribute to any kind of project.

To bring you into the present and future of JavaScript programming, this book
explores the language in the context of the most popular paradigms—functional,
reflective, and reactive—and describes how to work with key coding elements within
each paradigm. The book is organized around the four themes used in addressing
most programming problems: objects, functions, code, and data. Within these themes,
you’ll learn which proper object models to use to design your business domain, how
to combine functions and transform these objects into the desired output, how to
modularize your applications effectively, and how to manage the data that flows
through your application, whether that data is synchronous or asynchronous.

 As you can see from the spectrum of topics covered, this book is not for a Java-
Script newcomer or beginner. This book assumes that you already have some profes-
sional experience and a strong grasp of the basics (such as variables, loops, objects,
functions, scopes, and closures), and that you have gone through the exercise of
implementing and configuring JavaScript programs and setting up a transpiler such as
Babel or TypeScript.

 Modern JavaScript development is possible only when the language has a consis-
tent, steady evolution of features and syntax that tackle these problems.

4 CHAPTER 1 JavaScript reloaded
1.1 Evolving JavaScript
For many years, the evolution of JavaScript was stagnant. To put matters in perspec-
tive, ECMAScript, the specification language for JavaScript, had been stuck at ver-
sion 3.1 across major JavaScript engines since December 2009. This version was later
renamed as the better-known ECMAScript 5, or ES5. We waited for nearly six agoniz-
ing years—since June 2015, to be exact—to see any progress made in the language. In
tech years, six years is a long time; even ATM machines get updated sooner.

 During this time, a standards committee known as TC39 (https://github.com/
tc39), with the help of institutions such as the OpenJS Foundation (https://openjsf
.org), gave birth to ECMAScript 2015, also known as ES6. This change was the biggest
leap that JavaScript had made since its inception. Among the most important features
in this release (http://es6-features.org) were classes, arrow functions, promises, tem-
plate literals, blocked-scoped variables, default arguments, metaprogramming support,
destructuring assignment, and modules. Aside from all these most-needed language
features, the most important change was that JavaScript’s evolution shifted to a yearly
release cadence, allowing the language to iterate quickly and address problems and
shortcomings sooner. To help you keep track of where we are, ES6 refers to ECMAScript
2015, ES7 to ECMAScript 2016, and so on. These incremental releases are much eas-
ier to adopt and manage by platform vendors than large, monolithic releases.

 TC39 is composed of members of leading web companies that will also continue
evolving ECMAScript, the specification language set to standardize JavaScript, known
internationally as ISO/IEC 16262 or ECMA262 for short. (That’s a lot of acronyms, I
know, but I hope that you got the gist.) TC39 is also a platform that gives the whole
community some input into where the language is headed through participation in
IRC channels and mailing lists, as well as through finding and helping to document
issues in existing proposals. If you take a quick look at the language proposals on
TC39’s GitHub site, you can see that each one goes through a set of stages. These
stages are well documented on GitHub, so I’ll summarize them for you here:

 Stage 0 (strawman)—This stage is informal, and the proposal can have any form, so
anyone can contribute to the further development of the language. To add your
input, you must be a member of TC39 or registered with ECMA International. If
you’re interested, feel free to register at https://tc39.github.io/agreements/
contributor. When you’re registered, you can propose your ideas via the es-discuss
mailing list. You can also follow the discussions at https://esdiscuss.org.

 Stage 1 (proposal)—After a strawman has been made, a member of TC39 must
champion your addition to advance it to the next stage. The TC39 member
must explain why the addition is useful and describe how it will behave and
look when it’s implemented.

 Stage 2 (draft)—The proposal gets fully spec’d out and is considered to be exper-
imental. If it reaches this stage, the committee expects the feature to make it
into the language eventually.

https://github.com/tc39
https://github.com/tc39
https://github.com/tc39
https://openjsf.org/
https://openjsf.org/
https://openjsf.org/
http://es6-features.org
https://tc39.github.io/agreements/contributor
https://tc39.github.io/agreements/contributor
https://tc39.github.io/agreements/contributor
https://esdiscuss.org

5Objects
 Stage 3 (candidate)—At this stage, the solution is considered to be complete and
is signed off. Changes after this stage are rare and generally are made only for
critical discoveries after implementation and significant use. You can feel com-
fortable using features in this stage. After a suitable period of deployment, the
addition is safely bumped to stage 4.

 Stage 4 (finished)—Stage 4 is the final stage. If a proposal reaches this stage, it is
ready to be included in the formal ECMAScript standard specification.

This healthy stream of new proposals is important so that JavaScript keeps up with the
demands of today’s application development practices. Aside from discussing the cool
techniques and paradigms that come alive only with JavaScript, this book introduces
you to a few proposals that will forever change how we write JavaScript in the near
future, some of which I’ll mention briefly in this chapter. Here they are, in the order
in which they’ll appear in the rest of the book:

 Private class fields (https://github.com/tc39/proposal-class-fields) allow you to
define access modifiers (private, static) to a class’s properties.

 The pipeline operator (https://github.com/tc39/proposal-pipeline-operator) brings
the UNIX-like pipe feature of functional languages to JavaScript functions.

 The bind operator (https://github.com/tc39/proposal-bind-operator) is a new
language syntax that abstracts the use of Function.prototype.bind.

 Throw expressions (https://github.com/tc39/proposal-throw-expressions) allow
you to treat a throw statement as though it were a function or a variable.

 Observables (https://github.com/tc39/proposal-observable) enable the stream-
based, reactive paradigm.

For most of the remainder of this chapter, I’ll introduce you to the book’s four major
themes so that you understand the big picture and see how the themes relate to one
another. I’ll start with objects.

1.2 Objects
An object is nothing more than a memory reference that points (links) to other mem-
ory locations. At its core, JavaScript is an object-oriented language, and there are
many ways to define objects and the association among them in JavaScript. In this
book, we’ll look at many ways to define objects.

 For one-time use, for example, a simple object literal is probably the best and
quickest approach. An object literal comes in handy when you need to group multiple
pieces of data that need to be passed to, or returned from, a function. When you need
to create multiple objects with the same shape, however, it’s best to use a creational
API like Object.create to act as a factory of objects. You can also use your own func-
tions as object factories when combined with the new keyword. In the same vein,
classes have become popular in recent years and behave in much the same way. But if
objects are nothing more than references (links) to other objects, JavaScript also lets

https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-pipeline-operator
https://github.com/tc39/proposal-bind-operator
https://github.com/tc39/proposal-throw-expressions
https://github.com/tc39/proposal-observable

6 CHAPTER 1 JavaScript reloaded
you mash multiple small objects into one big one by using the spread operator or even
an API like Object.assign.

 Regardless of the approach you take, you often need to share data and a set of
methods to avoid duplicating code. JavaScript uses two central mechanisms: the prop-
erty resolution mechanism and prototypes. These mechanisms are intertwined. Java-
Script uses the object’s internal prototype reference as a path to navigate an object
hierarchy during property resolution, which can happen when you query properties
of an object or invoke a method. Suppose that you have the inheritance configuration
shown in figure 1.1.

Here, objects constructed from Student inherit from objects constructed from Person,
which means that all Student instances have at their disposal the data and methods
defined in Person. This relationship goes by the name differential inheritance, because
as the object graph becomes longer, every object borrows the shape of the one above
it and differentiates itself (becomes more specialized) with new behavior.

 From figure 1.1, calling enroll on a Student invokes the desired property right
away because it’s local to the object, but calling getAddress uses JavaScript’s property
lookup mechanism to traverse up the prototype hierarchy. The downside of this
approach is that when your object graphs become a lot more complex, a change to a
base-level object will cause a ripple effect in all derived objects, even at runtime. This
situation is known as prototype pollution, and it’s a serious issue that plagues large Java-
Script applications.

 Because the prototype is an internal implementation detail of objects in JavaScript,
from the point of view of the caller the Student API is a façade with four properties:
firstName, lastName, getAddress, and enroll. Similarly, we can obtain the same
shape by composing object literals describing a Person and Student. This approach is
a slight twist on the configuration in figure 1.1, but an important one. Take a look at
figure 1.2.

 With figure 1.2, the main difference is that we replaced prototype references with a
copy operation to symbolize that we’re essentially taking all the properties of Student
and Person and copying them (actually, assigning them) to an empty object. So
instead of linking objects, we created separate objects with the same shape. From the

Person

Student

[[Prototype]] (.__proto__)

{} Object.prototype

[[Prototype]] (.__proto__)

firstName
lastName
enroll

getAddress

Figure 1.1 A simple prototype
hierarchy in which objects of Student
inherit from objects of Person

7Functions
caller’s point of view, these objects are exactly the same, and you still benefit from
code reuse. In this scenario, Student and Person are not constructors or factories;
they are simple mixins (pieces of an object). Although this approach saves you from
unintended downstream changes and prototype pollution to some degree, the down-
side is that every new object you create adds a new copy of the assigned properties in
memory, making the memory footprint a bit larger.

 As you know, most things in computer science are trade-offs. Here, you trade the
memory-efficient approach of prototypes, which JavaScript engines highly optimize,
for ease of maintainability and reusability. In chapters 2 and 3, we’ll talk in detail
about these and other patterns, as well as the code that implements them.

 If objects are the fabric of JavaScript, functions represent the needles used to
thread the pieces together. JavaScript functions are by far the strongest parts of the
language, as we’ll discuss in section 1.3.

1.3 Functions
Functions implement the business logic of your application and drive its state (such as
the data inside all the objects in memory) to its desired outcome. At a fundamental
level, you can think about functions in two ways:

 In the procedural or imperative mindset, a function is nothing more than a
group of statements that execute together, used to organize and avoid duplicat-
ing similar patterns of code. The object-oriented paradigm inherits from proce-
dural programming, so it’s also a sequence of statements or commands that
modify objects. The reader is expected to be familiar with this approach.

 On the other hand, you can think about functions as expressions through the
lens of functional programming (FP). In this view of the world, functions repre-
sent immutable computations that are assembled like Lego bricks.

Figure 1.3 shows a flowchart of a hypothetical program of minor complexity that uses
a procedural style. We’ve been trained to think like computers and map out data flows
in this way. But as you’ll see over the next couple of figures (figure 1.4 and 1.5), when
you use the right techniques, you can simplify even the most complex program as a
streamlined sequence of expressions.

Person

Student

+ (copy)

{}lastName
getAddress

enroll
+ (copy)

firstName
lastName

enroll

getAddress

firstName

Figure 1.2 Two concrete objects (Student and Person)
mesh into a brand new object with all properties assigned
from the combined objects. Although no prototypal
inheritance is at play here, the directions of the arrow is kept
the same as in figure 1.1 to convey the similar mental model
of both approaches.

8 CHAPTER 1 JavaScript reloaded
You should be writing maintainable, declarative code that your users and teammates
can understand, and letting the computer parse and optimize code for its own under-
standing. FP can help a lot in this regard. You’ve probably heard or read that React
allows you to build UIs “the functional way” or that Redux promotes immutable state
management. Have you ever wondered where all these concepts come from? You can
code functionally by taking advantage of higher-order functions. In JavaScript, a func-
tion is an object capable of carrying or linking to variables in its lexical scope (also
known as its closure or backpack) and one that you can pass as an argument and return
as a callback. This fundamental part of the language, which has existed since the birth
of JavaScript, has infinite potential for designing code.

 FP expresses computations and data as a combination of pure functions. Instead of
changing the state of the system on every call, these functions yield a new state; they
are immutable. Coding with FP will prevent a lot of bugs—ones you don’t have to
bother to code around—and yield code that you can look at years later and reason
about more easily. This feature isn’t part of JavaScript per se, but it complements cod-
ing with JavaScript’s higher-order functions.

 Chapter 4 teaches you enough FP to significantly affect the way that you do your
day-to-day coding. It goes through an exercise of decomposition (breaking complex
problems into small, manageable chunks) and composition (pulling the pieces back
together). Abstractly, the coding mindset is shown in figure 1.4.

command 5

No

command 1

check

if/else
Yes

check 2

No
if/else

Yes
command 3command 2

Done

Figure 1.3 A hypothetical description of a program illustrating if/else
conditions and looping

9Functions
Inevitably, you’ll tend to create much simpler functions that work on some input and
produce an output based solely on this input. When you’ve been able to disassemble a
complex problem and represent it as multiple functions, you’ll use techniques such as
currying and composition to string all these functions back together. You can use
functions to abstract any kind of logic—such as conditional execution, loops, and
even error handling—to create a pipeline of information that looks like figure 1.5.

We’re fortunate to use a language that can give us this kind of support. In future
releases of the language, figure 1.5 could be encoded directly in JavaScript with the
new pipeline operator (|>) syntax, which you’ll learn about in chapter 4:

const output = [input data] |> command1 |> command2 |> ... |> command6;

Like a UNIX shell, this operator allows you to “pipe” the output of one function as the
input to the next. Let’s assume that you created a split function to break apart a
string by spaces into an array and a count function to return the length of the array.
The following line is valid JavaScript code:

'1 2 3' |> split |> count; // 3

Complex

problem

Task 1

Task 2

Task 3

Task 4

Figure 1.4 FP programs tend to decompose
big problems and solve them as the composition
of smaller tasks.

command 1

command 2

command 5

command 3

command 4

command 6

Figure 1.5 Composition allows you to build function pipelines in which the output of one
function becomes the input to the next.

10 CHAPTER 1 JavaScript reloaded
Furthermore, one of the most noticeable differences between figures 1.3 and 1.5 is
the removal of the conditional logic (the diamond shapes). How is this possible?
Chapter 5 introduces a concept known as the Algebraic Data Type (ADT). In our case,
type means an object with a certain shape, not a static type, which is what it commonly
refers to in other language communities. Given that there’s a lot of discussion about
static type systems for JavaScript (such as TypeScript and Flow), this book does spend a
little bit of time talking about static types in JavaScript in appendix B.

 ADTs are commonplace nowadays in many programming languages and libraries
as an elegant solution to common problems such as data validation, error handling,
null checks, and I/O. In fact, JavaScript’s own optional chaining, pipeline, promises,
and nullish coalesce operators, as well as Array.prototype{map, flatMap} APIs (all
discussed in this book), are inspired in these algebraic types.

 Earlier, we discussed composition in terms of functions. How can composition
apply to custom data objects? You’ll learn that Array’s own map and flatMap methods
conceptually apply to much more than arrays. They are part of a set of universally
accepted interfaces that you can implement to make any object behave like a func-
tion; we’ll call this object a functor or a monad. JavaScript’s own Array has functor-
like behavior, and you’ve been using this pattern all along without realizing it when
transforming arrays by using map. This style of coding is important as a foundation for
many of the topics covered in this book, so I’ll spend a little time here going over it.

 Suppose that you’ve declared some functor F (which could be Array) and given it
some input data. Functors are known by their specific implementation of map so that
you can transform the data enclosed inside F. Figure 1.6 shows a step-by-step view of
sequentially applying (mapping) functions to a string.

map is a contract that can apply to any F that meets the functor requirements. When
dealing with functions that you want to apply consistently across different indepen-
dent objects, you may be inclined to use Function.prototype.bind to set the target
object receiving the function call. With JavaScript’s new bind operator (::) syntax,
this process got easier. Here’s a contrived example:

F

'aabbcc'

.map(unique)

F

['a','b','c']

F

'abc'

.map(join)

F

'ABC'

.map(toUpper)

.get() = 'ABC'F.of('aabbcc')

Put value inside
the functor.

Unfold the functor.

Figure 1.6 A functor object (F) uses map to transform the data contained inside it. Functors are side-
effect-free, as every application of map yields a new instance of F while the original stays intact.

11Functions
const { map } = Functor;

(new F('aabbcc'))
 :: map(unique)
 :: map(join)
 :: map(toUpper); // 'ABC'

There are many use cases in which functors are useful, so let’s hone in on the issue of
conditional logic for validation. In chapter 5, we will implement our own ADT from
scratch to abstract over if/else logic with an expression such as “If data is valid, do X;
else, do Y.” The flow of data, although following the declarative recipe-like paradigm
of figure 1.5, will execute proper branching logic internally, depending on the result
of the validation check. In other words, if the result of a validation check is successful,
the callback function is executed with the wrapped input; otherwise, it’s ignored.
These two code flows are shown in figure 1.7.

Learning about ADTs now will prepare you for where the language is headed. Early
proposals include features such as pattern matching, which is proper for more func-
tional alt-JS programming languages such as Elm. I don’t cover pattern matching in
this book, as this proposal was in early draft form at the time of this writing.

isValid?

OR

Error message

No

no-op

no-op

no-op

split point

Follows Yes if
isValid is successful

Follows No if
isValid errors
out, skipping
all subsequent
operations

Every function is
called with the result
from the preceding
function.

command 1

command 2

command 3

Final result

Yes

Figure 1.7 An ADT to implement conditional logic models mutually exclusive (OR) branching.
On the Yes (success) side of the branch, all mapped operations are executed against the data
contained inside the ADT. Otherwise, on the No (failure) side, all operations are skipped. In
both cases, the data flows sequentially from beginning to end.

12 CHAPTER 1 JavaScript reloaded
 Now that you’ve learned object-oriented and functional techniques to model your
business domain, section 1.4 introduces you to JavaScript’s official module system, known
as ECMAScript Modules (ESM), to help you organize and deliver your code in an opti-
mal manner.

1.4 Code
Chapter 6 focuses on how to import and export code across your application by using
ESM. The main goal of this feature is to standardize how code is shared and used in a
platform-agnostic fashion. ESM supersedes earlier attempts at a standard module sys-
tem for JavaScript, such as AMD, UMD, and even CommonJS (eventually). ESM uses a
static module format that build/bundler tools can use to apply a lot of code optimiza-
tions simply by analyzing the static layout of your project and its interdependencies.
This format is especially useful for reducing the size of bundled code that is sent over
the wire to remote servers or directly to a browser.

 JavaScript can use its module system to load modules as small as a single function
to as big as monolithic classes. When you use well-established, tried-and-tested key-
words such as export and import, creating modular, reusable code is straightforward.

 Being able to change one area of your code without affecting others is the corner-
stone of modularity. Separation of concerns doesn’t apply only to the global project
structure, but also to running code—the topic of chapter 7.

 Chapter 7 talks about separation of concerns by taking advantage of JavaScript’s
metaprogramming capabilities. Using JavaScript symbols and APIs such as Proxy and
Reflect to enable reflection and introspection, you can keep your code clean and
focused on the problem at hand. We’ll use these APIs to create our own method deco-
rators to dynamically inject cross-cutting behavior (such as logging, tracing, and per-
formance counters) that would otherwise clutter your business logic, doing so only
when you need it.

 As a simple example, suppose that during debugging and troubleshooting you
want to turn on logging of any property access (reading the contents of a property or
calling a method) on some critical objects of your application. You’d like to do this
without modifying a single line of code and be able to turn it off when you’re done.
With the right instrumentation in place, you can create dynamic proxies that decorate
objects of your choice and intercept or trap any calls to that object to weave new func-
tionality. This simple example is depicted in figure 1.8.

 Now imagine replacing this simple trap with performance counters before and
after areas of code that you want to optimize, or using global security policies that can
mangle or obfuscate sensitive strings inside objects before printing them to the screen
or a log file. These method decorators become useful in a large number of use cases.
We’ll look at how to do these things in chapter 7.

 Now that you have objects, functions, and your code properly organized, all that’s
left to do is manage the data that flows through it.

13Data
1.5 Data
Because JavaScript is critically positioned as the language of the web (both server and
client), it needs to handle data of many shapes and sizes. Data can arrive synchro-
nously (from local memory) or asynchronously (from anywhere else in the world). It
may come in all at once (single object), in an ordered sequence (array), or in chunks
(stream). JavaScript engines, at a high level, rely on an architecture featuring a call-
back queue with an event loop that can execute code continuously in a concurrent
fashion and without halting the main thread.

 Without a doubt, using promises as a pattern for abstracting time and data locality
has made it simpler to reason about asynchronous code. A Promise is an object that
behaves like a function representing an eventual value, with an API that bears a lot of
resemblance to ADTs. In your mind, you can replace then with map/flatMap. A Prom-
ise can be in one of several states, as shown in figure 1.9, of which the most notice-
able are 'fulfilled' and 'rejected'.

 As you can see, promises also models two branches of code. These two branches
move your logic forward to execute your business logic to the desired outcome

proxy.foo

'bar'

const target = {
foo: 'foo'

};

target.foo; //'foo'

const handler = {
get: function() {
return 'bar';

}
};

const proxy =
new Proxy(target, handler);

proxy.foo; //'bar'

[GET] trap

foo: 'foo'

Figure 1.8 Creating a proxy object dynamically around some target object. Any property access (foo) is
trapped by the proxy object, so you can inject any code you want. In this simple case, the proxy object traps the
access to foo and dynamically changes its return value to 'bar'.

new Promise(executor)

state: 'fulfilled'

result: value

state: 'rejected'

result: Error

state: 'pending'

result: undefined

.re
sol

ve(
val

ue)

.reject(Error)

- fulfilled: Executor succeeded

- rejected: Executor failed

- pending: Hasn’t fulfilled or rejected yet

- settled: Has fulfilled or rejected

Figure 1.9 A new Promise object and all its possible states

14 CHAPTER 1 JavaScript reloaded
('fulfilled') or produce some sort of error message ('rejected'). Promises are
composable types, much like ADTs and functions, and you can create chains of
sequential logic to attack complex problems involving asynchronous data sources and
profit from proper error handling along the way (figure 1.10).

In chapter 8, we discuss promises and the async/await syntax that appeals to develop-
ers from a more imperative or procedural background, yet shares the behavioral
semantics of promises. With async/await, you have the visual advantage of writing
code that looks as though it’s pausing and waiting for a command to execute (as in
fetching data with an HTTP request), but behind the scenes, it’s all promises interact-
ing with the underlying event loop architecture. In chapter 8, we also explore topics
implemented on top of promises such as async iterators and async generators.

 Promises model single, asynchronous values, but async generators allow you to
deliver potentially infinite sequences of data over time. Async generators are a good
mental model for understanding streams, which are sequences of events over some
period of time, as depicted in figure 1.11.

There are standard Stream APIs to read/write streams implemented in both browsers
and Node.js. Examples are file I/O streams in Node.js and the Fetch API in browsers.

3. Regardless of the state of the
preceding promise (fulfilled or
rejected), a new Promise object
is created, and the process
repeats.

1. When a new Promise(executor)
is created, it starts in a pending
state, waiting for the result of the
executor function. .then(onSuccess)

.then(,onReject)

.catch(onReject)

Fulfill

Reject

R
eturn

Return

pending

new Promise((resolve, reject) => {
//... executor body

})

2.a Calling the resolve callback
function invokes then with
a value as the first argument.

2.b Calling the reject or throwing
an exception in the executor
will trigger the error branch
of all subsequent then/catch
reactors until the error is handled.

Fulfill

Reject

pending

Figure 1.10 How Promise objects chain to form new Promise objects. Along the way, the same pattern
repeats. Both success and rejection cases lead to a new Promise object returned.

Time

Figure 1.11 A simple stream with three
events separated by some unit of time

15Data
Nevertheless, given the diversity of the data types we deal with on a daily basis, instead
of using Promise for a single-value event and Stream for sequences of events, ideally
we’d use a single API to abstract over all these data types with the same computing
model. This approach is attractive to framework and library authors alike because it
allows them to provide a consistent interface. Fortunately, JavaScript proposes the
Observable API as the solution.

 Any time you see an Observable object, you should be thinking in terms of fig-
ure 1.11. JavaScript’s inclusion of Observable built into the language seeks to stan-
dardize the amazing things you can do with libraries like RxJS. With observables, you
can subscribe to events coming from any source: a simple function, an array, an event
emitter (such as DOM), an HTTP request, promises, generators, or even WebSockets.
The idea is that you can treat each piece of data as some event in time and use a con-
sistent set of operators (observable functions) to process it. Like functions, promises,
and ADTs, observables are composable. Do you see a pattern? This pattern isn’t a coin-
cidence; it’s the coding pattern of modern software and one that most languages are
increasingly adopting. Hence, you can also create chains or pipelines by calling a
sequence of composable operators that work on or transform the data flowing
through an observable object to process data synchronously or asynchronously as it
propagates forward in time. Figure 1.12 shows how a source observable is transformed
by some operator (maybe map?) to yield a new observable.

 In chapter 9, we’ll create our own little library of operators. These pipeable opera-
tors are themselves higher-order functions, and the functions you provide to them

operator function

map(fn)

fn: →

Source events (button clicks, mouse
drags, HTTP chunked data, and so on)
are wrapped using an Observable.

Result events

You can chain any number of
operator functions, creating new
observables along the way.

An observable operator is
a function that internally
observes each event, applies
the respective business logic,
and emits new events into a
new observable.

Consider an operator called :map

Figure 1.12 A source Observable object (first long arrow) with all its events piped
into an operator function and transformed. All new values are emitted by means of a new
Observable.

16 CHAPTER 1 JavaScript reloaded
encode your domain-specific business logic. As I said at the beginning of this chapter,
and as you’ll see time and time again throughout the book, higher-order functions are
by far the strongest feature of JavaScript.

 I hope that this overview sounds exciting. I’ve kept the discussion at a high level for
now, but each chapter after this one will dive into lots of detail and code. In this book,
you’ll not only be exposed to new cutting-edge techniques, but also see them imple-
mented in the context of a more contemporary type of application. Before we dive into
all those nifty topics, let me introduce you to the sample application we’ll be building
throughout this book. Section 1.6 helps set the context for all the code you’ll see.

1.6 Sample application: Blockchain
It’s been my experience that most programming books use trivial examples, often
numeric or foo/bar, to demonstrate a particular feature of a technology. Although these
examples are effective because they assume zero domain knowledge, the downside is
that you’re left wondering how they fit into a more complex, realistic application.

 If you haven’t been living under a rock for the past few years, you’ve seen a lot of
hype about blockchain and cryptocurrencies, which have taken the world by storm.
Many analysts consider blockchain to be one of the most important technologies to
learn in the years to come. Blockchains are so ubiquitous and prevalent nowadays that
getting familiar with them will add an invaluable skill to your tool belt—not to men-
tion the fact that blockchains are cool. Certainly, teaching this technology is not sim-
ple, but this application is deliberately kept small and simple to fit in this book. No
ramp-up is needed, and no background is required. Your own passion and drive, with
some JavaScript background, are the only prerequisites.

 In this book, we’ll build some parts of a simple, naive blockchain protocol from
scratch to illustrate how we can apply modern JavaScript techniques to a real-world
problem. Because the focus is on teaching JavaScript, teaching blockchain is purely
pedagogical and far from a production-ready implementation. Nevertheless, you’ll be
exposed to some interesting techniques from the blockchain world, such as immuta-
bility, hashing, mining, and proof of work. For the sake of exploring the wide breadth
of JavaScript features, we’ll find creative ways to plug in as many features and tech-
niques as possible into this small, contrived sample application.

 To give you some background, a blockchain is a type of database made up of a list
of records (called blocks) that may store any type of data in some chronological order.
Unlike traditional databases, blocks are immutable records; you can never alter the
contents of a block, only add new ones.

 Blocks are linked cryptographically. No pointer or reference connects one block to
the next, as in a linked list. Rather, each block contains a cryptographically secure
hash (such as SHA-256), and the hash of a new block depends on the hash of the
block that preceded it, thereby forming a chain. Because every block is hashed from
the previous block’s hash, this chain is inherently tamperproof. Manipulating even a
single property of any transaction in the history of all blocks will result in a different

17Sample application: Blockchain
hash value that will invalidate the entire chain. This fact is one of the main reasons
why blockchain data structures are desired not only in financial software, but also in
secure document-storage solutions, online voting, and other industry segments.

 The process of computing block hashes daisy-chains all the way back to the first
block in the chain, which is known as the genesis, or block of height 0. In real life, a
blockchain is much more complex. For purposes of this book, though, it’s enough to
picture it as a sequential data structure in which each block stores the most recent
transactions that occurred. This simplified structure is shown in figure 1.13.

As you can see in the figure, each block is made up of a block header, which is the
metadata associated with each block. Part of this header is a field, previousHash, that
stores the previous block’s hash. Aside from metadata, each block may contain a pay-
load, which more commonly is a set of transactions. The latest block contains the most
recent transactions that were pending in the chain at the moment it was created.

 A transaction looks like a typical bank transaction and has the form “A transferred
X amount of funds to B,” where A and B are cryptographic public keys that identify
the parties involved in the transaction. Because the blockchain contains all the trans-
actions that occurred in history, in the world of digital currencies like Bitcoin, it is
known as a public ledger. Unlike your bank account, which is private, a blockchain
like Bitcoin is public. You might be thinking, “My bank is in charge of validating every
transaction, so who validates these transactions?” Through a process called mining,
which you’ll learn about in chapter 8, you can validate all the transactions stored in a
block, as well as all those stored in history. Mining is a resource-intensive process.
While mining is happening, the transactions are said to be pending. All these pending

previousHash

Block

TX
From

To

TX
From

To

Block headerBlock

TX
From

To

Block header

Block

TX
From

To

TX
From

To

Block header

previousHash

hash: A block’s hash is made

up of all the block's data

(including previousHash) and

its transactions. Most recent transactions

Genesis

Figure 1.13 A simple representation of a blockchain, in which each block stores the previous block’s
hash. This hash is used to compute the current block’s own hash, effectively connecting all these
blocks in a chain.

18 CHAPTER 1 JavaScript reloaded
transactions combine to form the next block’s data payload. When the block gets
added to the blockchain, the transaction is complete.

 A cryptocurrency acquires monetary value when the backing resource is scarce and
expensive to find, extract, or “mine,” such as gold, diamonds, or oil. Computers can
use their powerful processors or arithmetic logic units to perform high-speed math
that solves a mathematical problem, which is known as proof of work. We’ll look at the
implementation details of our proofOfWork function in chapter 7.

 Consider an example of how a transaction is added and then secured by the block-
chain protocol. Suppose that Luke buys coffee from Ana’s Café for 10 Bitcoin. Users
are identified by their digital wallets. The payment process triggers logic to transfer
funds in the form of a new pending transaction. The set of pending transactions is
stored inside a block; then the block is mined and added to the chain for validation to
occur. If all validation checks are good, the transactions are said to be complete. The
incentive for a miner to run this expensive proof-of-work computation is that there’s a
reward for mining. This protocol is summarized in figure 1.14.

Taking these concepts into account, figure 1.15 shows a simple diagram of all the
objects involved in this sequence.

 As we progress through the chapters, we’ll flesh out all these objects as well as the
business logic that ties them together. Concretely, we’ll implement code to validate
the entire chain, calculate the Bitcoin balance of a specific user (wallet account), exe-
cute a simple proof-of-work algorithm, and mine a block into a blockchain.

Luke buys a

cup of coffee.

Ana’s coffee shop New transaction is created

TX
Luke

Ana

Miner verifies

transaction

(mines new block)

Block

Pending transaction

inserted into block

Block

BlockBlock

Block gets added to the chainTransaction is complete

in Ana’s digital wallet

Figure 1.14 Luke buys coffee from Ana’s coffee shop, paying with his digital wallet. The payment
process creates a new transaction, set to pending. After a certain period, miners compete to validate
this transaction. Then all the transactions that happened, including Luke’s payment, are added as a
block in the chain, and the payment is complete.

19Sample application: Blockchain
This 10,000-foot introduction to some of the ideas and new concepts covered in this
book scratches the surface. By the end, you’ll see that JavaScript possesses all the
expressive power you need to let your limitless creativity and imagination run wild
while writing lean and clean code.

 So welcome aboard. I trust that you will find this book fun and engaging as you
embark on the journey that is the joy of JavaScript!

Where to find the code
The code for this book is freely available on GitHub (https://github.com/JoyOfJava
Script/joj). The repository contains the worked-out blockchain application as well as
all code listings in the form of unit tests. It’s important to mention that all code sam-
ples in this book assume strict mode ("use strict";), which is the recommended
way of writing JavaScript.

Strict mode is beneficial because it disallows some bad parts of the language, such
as employing the infamous with statement, calling delete on a variable (it would be
nice if JavaScript also forbade calling delete on an object property), and using some
of the newly reserved keywords (such as interface). Strict mode also turns some pas-
sive errors into full-blown exceptions.

The repository also includes Babel configuration files to transpile some nonstandard
proposals that will change your JavaScript coding in the future. Babel is not covered
in the chapters, but you can read a bit more about it in appendix A.

To run each chapter’s listings, you have two options: download and install Node.js
v14 or later to run the code locally, or use a minimal Docker configuration that con-
figures a virtual environment with Node.js 14 and contains all the required project
configurations. Docker is convenient if you don’t want to or can’t upgrade your envi-
ronment. The Docker sandbox ensures that all the code works regardless of your sys-
tem configuration or even which operating system you use. It’s straightforward to sign
up and download a Docker engine for your specific OS from https://www.docker.com/
products/docker-desktop.

Visit the GitHub project’s README.md file for instructions about how to get started.

Block

Blockchain

1..*

1

1 1..*
Transaction

Wallet

Wallet

Sender

Recipient

Money

Funds

1

1

1

1

1

1

Figure 1.15 The main objects of the domain layer at play in our simple
blockchain application

https://github.com/JoyOfJavaScript/joj
https://github.com/JoyOfJavaScript/joj
https://github.com/JoyOfJavaScript/joj
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop

20 CHAPTER 1 JavaScript reloaded
Summary
 JavaScript has two important features that differentiate it from other languages:

a prototype-based object model and higher-order functions. You can combine
these features in systematic ways to craft powerful, elegant code.

 TC39, ECMAScript’s standards body, has committed to releasing new features to
JavaScript every year. Now we have a community-driven process to evolve Java-
Script following the ECMA standard as well as to fix any shortcomings quickly. In
this book. you’ll learn how to use the bind and pipeline operators, code with
observables, and use many other new features, all originating from this process.

 JavaScript’s dynamic object model makes it easy to use mixin composition over
prototype inheritance by taking advantage of dynamic object extension.

 Abstractions should make code more specific or refined by stripping ideas down
to their fundamental concepts. ADTs refine code branching, error handling,
null checking, and other programming tasks.

 FP uses techniques such as function composition to make your code leaner and
more declarative.

 JavaScript is one of the few languages that has had first-class support for asynchro-
nous programming since the beginning. It was revamped with the advent of
async/await, which completely abstracts the asynchronous nature of the code.

 Observables use the streams programming model to provide a consistent pane
of glass over any type of data source—synchronous, asynchronous, single-value,
or infinite.

Part 1

Objects

The journey to discovering what makes JavaScript a joy to code with starts
with its object system. Objects are the foundation for everything you do and
everything you will be able to do with the language. Object design is used to
make sense of your domain and how all its pieces relate and pass messages to
one another. As powerful as the object system is, however, it can be quite stress-
ful to figure out which patterns to use—a task that everyone seems to do slightly
differently. We can catalog patterns based on two groups: prototypal and delega-
tion. This part gives you an overview of each pattern and its strengths.

 In chapter 2, we start by reviewing JavaScript’s prototype mechanism. Any-
thing meaningful you do with JavaScript requires you to understand how proto-
type hierarchies work and how properties are resolved by the JavaScript runtime.
Prototypal inheritance enables some nice object-oriented techniques to con-
struct objects by using Object APIs, constructor functions, and classes.

 Prototypal inheritance may lead to a tight coupling among objects that belong
to the same hierarchy, which tends to become brittle over time. Chapter 3 teaches
you some techniques to combat this situation. These techniques are composi-
tional in nature, clearly demarcating object links to make your object models a
bit more maintainable. In this chapter, you’ll learn about techniques such as
OLOO (Objects Linked to Other Objects) and mixins.

 For teaching purposes, in this part we’ll use a combination of these tech-
niques to build the skeleton of our blockchain domain model.

Inheritance-based
object modeling
Merely adding “prototypal” in front to distinguish the actually nearly opposite behavior
in JavaScript has left in its wake nearly two decades of miry confusion.

—Kyle Simpson

Aside from a few primitives, everything in JavaScript is an object. Yet for something
that we deal with routinely, objects continue to be the most intimidating, hard-to-
get-right parts of the language. The most common question that I hear is “How
should I write the prototype chain to relate X, Y, and Z?” Every article or book you
read does it in slightly different ways, and for some reason, even experienced devel-
opers need to turn to a search engine to relearn the process once in a while. The
reason is twofold: on one side, a lot of boilerplate code is required, and on the
other, we’re confusing the terms inheritance and prototype.

This chapter covers
 Prototypal inheritance, constructor functions,

and classes

 JavaScript’s property resolution mechanism

 The “prototypal inheritance” oxymoron

 Advantages and drawbacks of classes in
JavaScript
23

24 CHAPTER 2 Inheritance-based object modeling
 Inheritance is a powerful pattern of code reuse and is something we’ll take advan-
tage of in this book, but we should not limit our understanding of prototypes to creat-
ing parent-child relationships. Inheritance is only one of the many applications of
prototypes (and an important one indeed), but prototypes can do much more. Because
one of the largest segments of JavaScript developers comes from class-oriented lan-
guages, to ensure their seamless transition, it was decided to make classes a first-class cit-
izen of the language in ECMAScript 2015. Support for classes snowballed into a bunch
of new features to support private and static properties. Once again, JavaScript’s history
is tainted with attempts to make it look like Java. All this syntax is not welcomed with
open arms by many JavaScript purists because it masks the underlying mechanics of
JavaScript’s great object system.

 For better or for worse, a lot of the domain modeling has been moving to use the
streamlined setup of classes instead of the unnecessary boilerplate code of direct
prototype configuration. It’s important to have a firm understanding of how Java-
Script’s object system works, however. In this chapter, we’ll discuss two patterns that
use the prototype feature to model inheritance relationships: constructor functions
and ECMAScript 2015 classes. Both these patterns give you the benefit of sharing
data and behavior through JavaScript’s internal prototype references and property
resolution mechanism.

 Let’s begin by reviewing the basic prototype inheritance configuration that you’ve
probably seen many times.

2.1 Reviewing prototypal inheritance
JavaScript borrowed prototypes from a language called Self. The prototype mecha-
nism is a big part of what allows JavaScript to be object-oriented; without it, you would
not be able to send messages to objects higher up in the hierarchy of a complex net-
work of interconnected objects (aka inheritance).

 In this section, we’ll review the code needed to set up a basic prototype chain and
lay the groundwork for learning about JavaScript’s property resolution mechanism,
which is JavaScript’s central mechanism for object access.

 Given your experience, you’ve probably dabbled with objects and their prototypes,
so I’ll jump straight into some code. The first API we’ll look at to establish what looks
like a parent-to-child relationship is

 Object.create(proto[,propertiesObject]);

This API creates a new object linked to a prototype and optionally accompanied by a
collection of new property definitions. For now, we’ll focus only on the first argument
(proto), as shown in the following listing.

const proto = {
 sender: 'luis@tjoj.com',
};

Listing 2.1 Using Object.create to create an object from a prototype

25Reviewing prototypal inheritance
const child = Object.create(proto);
child.recipient = 'luke@tjoj.com';

child.sender; // 'luis@tjoj.com'
child.recipient; // 'luke@tjoj.com'

With this code, any properties of the parent (proto) object, hereafter called the
prototype, are accessible from the child object. Nothing interesting is going on
here, let’s do something more meaningful and model our first blockchain concept,
a transaction.

 A transaction represents an exchange of certain goods, such as money, from a
sender to a receiver. For the most part, a transaction in the blockchain world looks
exactly like that of a traditional banking system. To start, we’ll make sender and
recipient simple email addresses and funds a number of fake Bitcoin amount as our
form of currency. In our example, Luke uses Bitcoin from his digital wallet to buy cof-
fee from Ana’s Café, as shown in figure 2.1.

Let’s begin constructing this example. Listing 2.2 uses Object.create to establish a
prototype configuration between two objects, moneyTransaction and transaction,
and adds support for funds. In the wild, you’ll find some slight variations of this setup,
but the general idea is always the same.

const transaction = {
 sender: 'luis@tjoj.com',
 recipient: 'luke@tjoj.com'
};

const moneyTransaction = Object.create(transaction);
moneyTransaction.funds = 0.0;
moneyTransaction.addFunds = function addFunds(funds = 0) {
 this.funds += Number(funds);
}

moneyTransaction.addFunds(10.0);
moneyTransaction.funds; // 10.0

Listing 2.2 Transaction objects linked by a basic prototype setup

Using Object.create to configure a new child object
based on a parent object (proto). Internally, the
child object has a reference to the parent to access
any of its properties. Another way to do this is to
call the Object.setPrototypeOf(child, proto) API.

Creates a

Transaction

Luke buys a

cup of coffee.

Ana’s coffee shop Transaction object

TX
Luke

Ana

Figure 2.1 A transaction object captures the details of a sender (Luke)
sending Bitcoin to a receiver (Ana) to purchase coffee.

Prototype object from which
to derive other objects—a
regular object, not some
abstract blueprint Creates a derived

object from the
prototype

Adds new methods to the child
object. Repeating the function name
in the declaration helps build more-

informative stack traces.

26 CHAPTER 2 Inheritance-based object modeling
Let’s check whether our assumptions continue to be valid in the next listing.

Object.getPrototypeOf(moneyTransaction) === transaction; // true
moneyTransaction.sender; // 'luis@tjoj.com'
moneyTransaction.funds; // 10

Let’s unpack listing 2.2 a bit further. The prototype object (transaction) is in fact an
arbitrary object literal that we’ll use to group common properties. As you can see, pro-
totypes are objects that can be manipulated at any time, even at runtime, not created
from thin air at the point of forming an inheritance association. This fact is import-
ant to understand; we’ll come back to why it matters when we talk about classes in
section 2.3.

 Here’s another take on this code, using Object.create’s second parameter, which
receives an object of data descriptors:

const moneyTransaction = Object.create(transaction, {
 funds: {
 value: 0.0,
 enumerable: true,
 writable: true,
 configurable: false
 }
});

This second argument gives us fine control over how this newly created object’s prop-
erties behave:

 Enumerable—Controls whether the property can be enumerated or viewed (as
when you pass the object to console.log, enumerating the keys with Object
.keys), or whether it’s seen by Object.assign (a topic that we’ll circle back to
in chapter 3).

 Configurable—Controls whether you’re allowed to delete an object’s property
with the delete keyword or whether you can reconfigure the field’s property
descriptor. Deleting a property alters the shape of an object and makes your
code more unpredictable, which is why I prefer to use this attribute’s default
value (false) or omit it from the data descriptor.

 Writable—Controls whether you can reassign the value of this field, effectively
making its assignment immutable.

When you create a property by using the dot notation directly on the object, as in list-
ing 2.2, that act is equivalent to defining a property with a descriptor with all settings
set to true. Typically, most developers don’t bother with data descriptors, but they can
come in handy when you’re writing your own libraries and frameworks for others to
use and want to do things such as hide a certain field from view or make some fields

Listing 2.3 Inspecting the new transaction objects

Checks whether the
prototype link has

been established
Verifies that inherited

properties are accessible
from the child object

27Reviewing prototypal inheritance
immutable. Data descriptors help enforce certain design principles and communicate
clear intentions about how your APIs work. We’ll come back to this issue of immutabil-
ity and why it’s important in chapter 4.

 As you can see, Object.create offers a simple, elegant way to create objects from
a shared prototype and establishes the proper inheritance linkage to resolve prop-
erty lookups.

2.1.1 Property resolution process

A discussion of JavaScript’s prototype mechanism is moot without a discussion of its
property lookup mechanism, which is the most important concept behind implement-
ing object-oriented patterns in JavaScript. According to the ECMAScript specification,
an internal reference known as [[Prototype]] (accessible via the __proto__ property in
objects) is configured by Object.create and effectively links moneyTransaction to
transaction, as shown in figure 2.2. This is the sole reason why we can properly resolve
moneyTransaction.sender to the value 'luis@tjoj.com', as shown in figure 2.2.

This figure points out the relationship among the objects through the prototype
chain, which guides the JavaScript engine to find a property by a certain key. I’ll explain
this process in more detail. When requesting a member field, the JavaScript engine
first looks for the property in the calling object. If JavaScript can’t find the property
there, it looks in [[Prototype]]. The property sender is not declared in money-
Transaction, yet it still resolves successfully. Why? Any property access or method
invocation in moneyTransaction will travel up the prototype chain, continuing to
transaction until it finds the property there and returns it. But what if it doesn’t?
The lookup process would continue further, finally terminating at the empty object lit-
eral {} (aka Object.prototype). If resolution fails, the result of the operation is
undefined for a value property or a TypeError for a function-valued property.

transactionmoneyTransaction

[[Prototype]]

Object.create

{}

[[Prototype]]

moneyTransaction.sender

Lookup

Found

sender

recipient

Lookup

"luis@tjoj.com"

Object.prototype

Figure 2.2 The internal reference [[Prototype]] is used to link an object (moneyTransaction) to
another (transaction) in a unidirectional fashion, eventually ending in Object.prototype.

28 CHAPTER 2 Inheritance-based object modeling
 Behind the scenes, you can think of the hidden __proto__ property as being the
bridge that allows you to traverse the chain. When we use prototypes to implement
inheritance, which is the most common scenario, we say that property resolution
“moves up” the inheritance chain.

 You should never use __proto__ directly in your applications, as it’s meant to be
used internally by the JavaScript engine. Hypothetically, if surfaced in userland code,
it would look something like this:

const moneyTransaction = {
 __proto__: transaction,
 funds: 0.0,
 addFunds: function addFunds(funds = 0) {
 this.funds += Number(funds);
 return this;
 }
}

NOTE The use of __proto__ has been the subject of a heated debate over the
years, and it’s currently being deprecated. It was standardized in ECMAScript
2015 as a legacy feature only so that web browsers and other JavaScript run-
times could maintain compatibility. Please don’t use it directly (even though
you might see it used in the book for teaching purposes), as it might cease to
work after some time. If you need to manipulate this field, the recommended
APIs are Object.getPrototypeOf and Object.setPrototypeOf. You can also
call the Object#isPrototypeOf method directly on the object.

With regard to notation, when referring to a property accessible from a
constructor function’s prototype, as in Object.prototype.isPrototypeOf,
throughout this book the # symbol is used instead: Object#isPrototypeOf.

Figure 2.2 looks straightforward but can get tricky with long, intertwined object graphs.
I won’t delve into those specific use cases to keep the discussion centered on object
construction techniques, but you can find out more by exploring the great resources
in the following sidebar.

Understanding the idiosyncrasies of JavaScript objects
In this book, we’ll be using well-formed, simple object hierarchies, so we won’t go into
detail about what things can go wrong when prototype chains are broken or when prop-
erties in an object are shadowed. The ins and out of JavaScript objects could easily
take up an entire book. In fact, an amazing book series by Kyle Simpson, You Don’t
Know JS (https://github.com/getify/You-Dont-Know-JS/tree/1st-ed), describes this
example in great detail. The series dives deeply into the nuances of manipulating object
chains, offers lots of good tips and best practices for behavior delegation (which we’ll
study in chapter 3), and debunks the myths behind object creation and the prototype
mechanism. This series has been a great inspiration and has highly influenced the way
I code JavaScript today. It should be on every JavaScript developer’s bookshelf.

https://github.com/getify/You-Dont-Know-JS/tree/1st-ed

29Reviewing prototypal inheritance
Now that we’ve reviewed the basic prototype setup in JavaScript, let’s discuss why it’s fun-
damentally inaccurate to use the overloaded term inheritance to describe JavaScript’s
object-oriented model.

2.1.2 Differential inheritance

Differential inheritance, in which derived objects maintain references to the objects
from which they are derived, is common in prototypal languages. In JavaScript, differ-
ential inheritance is called [[Prototype]]. By contrast, in class-based inheritance, a
derived object copies all the state and behavior from its own class, as well as all its
derived classes. The key distinction is copy versus link.

 Although this term sounds a bit intimidating, differential inheritance is a simple con-
cept referring to how extended behavior separates a derived object from its linked
generic parent. If you think about a JavaScript object as being a dynamic bag of prop-
erties, differentiation means adding properties to another bag and linking the two
bags. As you saw in figure 2.2, because the prototype resolution mechanism flows uni-
directionally from a calling object to its linked object (and so on), any newly derived
object is meant to differentiate itself from its parent with new behavior. New behavior
includes adding new properties or even overriding an existing property from a linked
object (known as shadowing). I don’t cover shadowing in this book, but you can visit
http://mng.bz/OEmR for more information.

 Consider another scenario in which we extend the generic transaction object to
define hashTransaction. This object differentiates itself from its parent by adding a
function (calculateHash) to compute its own hash value. At a high level, hashing is
using an object’s state to generate a unique string value, much as JSON.stringify
does, but we need to target only the values, not the entire shape of the object. This
hash value has many uses in industry, such as fast insert/retrieval from hash tables or
dictionaries, as well as data integrity checks.

 In the world of blockchains, a hash is typically used as a transactionId that
uniquely identifies a certain transaction that took place. For simplicity, we’ll start with
a simple (insecure) hashing function in the next listing.

const hashTransaction = Object.create(transaction);

hashTransaction.calculateHash = function calculateHash() {
 const data = [this.sender, this.recipient].join('');
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
}

hashTransaction.calculateHash(); // 237572532174000400

Listing 2.4 Creating hashTransaction with basic hashing calculation

Adds a method
to calculate its
own hash

Properties that
become input
to the hashing
algorithm

Uses the exponentiation operator
to square the hash value

http://mng.bz/OEmR

30 CHAPTER 2 Inheritance-based object modeling
To take another approach, you can also use Object.setPrototypeOf to differentiate
a child object. Suppose that you want to extend moneyTransaction from hash-
Transaction. All the same mechanisms apply:

const moneyTransaction = Object.setPrototypeOf({}, hashTransaction);
moneyTransaction.funds = 0.0;
moneyTransaction.addFunds = function addFunds(funds = 0) {
 this.funds += Number(funds);
};
moneyTransaction.addFunds(10);
moneyTransaction.calculateHash(); // 237572532174000400
moneyTransaction.funds; // 10
moneyTransaction.sender; // 'luis@tjoj.com'
moneyTransaction.recipient; // 'luke@tjoj.com'

Now that we’ve reviewed a couple of examples involving simple object literals, it’s
much more useful to create new transactions with different data in them. Section 2.2
jumps into using constructor functions.

2.2 Constructor functions
The constructor functions (aka object constructors pattern) have been the modus
operandi for building objects in JavaScript for many years. Although object literals
offer a terse way to define a single object, this method doesn’t scale when you need to
create hundreds of objects of the same shape. In this case, the constructor function
acts as a template to initialize objects populated with different data. You’re probably
familiar with this pattern, but this section discusses some advanced techniques that
you may not have encountered before.

2.2.1 Functions as templates

Using functions instead of straight object literals to build objects allows your model to
better evolve because you have much more control of how the objects are built. Func-
tions allow you to export a facade to the caller under which changes don’t necessarily
need to propagate to the calling code. The details of how an object gets initialized,
such as enforcing any preconditions, are properly tucked away inside the constructor.

 The following code snippet, for example, never reveals unnecessary details about
the shape of HashTransaction or any operations that might take place during instan-
tiation. Encapsulation is always a good choice:

const tx = new HashTransaction('luis@tjoj.com', 'luke@tjoj.com');

This fundamental design decision makes your code less fragile and more maintain-
able, so in most cases, using functions to build objects is the preferred approach.

 By convention, a constructor function name is capitalized to denote a kind of poor
man’s class, if you will. Let’s take the use case from listing 2.4 and refactor it using con-
structors (listing 2.5). We have several options here. The simplest way to have an
object inherit properties from another is to add all its properties to this new object;

31Constructor functions

constru

or
there’s no need to rely on the prototype chain. Because your objects are created
dynamically (when the function is invoked), you need to pack these properties (fill
the bag) into a single object context (this) within each constructor invocation.

function Transaction(sender, recipient) {
 this.sender = sender;
 this.recipient = recipient;
}

function HashTransaction(sender, recipient) {
 if (!new.target) {
 return new HashTransaction(sender, recipient);
 }
 Transaction.call(this, sender, recipient);

 this.calculateHash = function calculateHash() {
 //...
 }
}

const tx = new HashTransaction('luis@tjoj.com', 'luke@tjoj.com');
tx.calculateHash(); // 237572532174000400
tx.sender; // 'luis@tjoj.com'

By using functions, you can easily instantiate as many HashTransaction objects as you
like, all of them containing the properties defined in Transaction as well. One caveat
is that you need to call the function with the new keyword to ensure the context
(this) is initialized properly.

 These objects do not share references to any properties, however. You defined
calculateHash directly on HashTransaction’s context (this variable), for example,
adding a new calculateHash property to each instance of HashTransaction. In other
words, if you create two instances, you’ll see two copies of the same method:

const tx1 = new HashTransaction('luis@tjoj.com', 'luke@tjoj.com');
const tx2 = new HashTransaction('luis@tjoj.com', 'luke@tjoj.com');

tx1.calculateHash === tx2.calculateHash; // false

To fix this problem, you need to configure how prototypes links are set up as new
objects are created.

2.2.2 Sharing properties by using constructors and prototypes

One interesting aspect of using constructors is that for every constructor F, JavaScript
automatically creates the object F.prototype:

HashTransaction.prototype; // HashTransaction {}

Listing 2.5 Building and linking objects using the constructor functions pattern

Base
ctor

Detects whether the
instantiation of the child
object omits the new keyword
and fixes the call. This line
helps developers who forget to
write new. I’ll come back to
this topic in section 2.2.2.

Calls the parent’s construct
to initialize any parent
member properties into
this object’s context

Adds a new calculateHash
method to every instance
created

Uses the new keyword to instantiate
new objects. The new keyword is

required to pass the newly created
object as the this context.

32 CHAPTER 2 Inheritance-based object modeling
This object is added to facilitate code sharing and reuse, especially with methods, where
it’s unnecessary to define more than one copy. Hence, a more optimal approach is to
add calculateHash to HashTransaction’s prototype so that it’s shared among all
HashTransaction instances, for example:

HashTransaction.prototype.calculateHash = function calculateHash() {
 //...
}

With this slight twist, these two properties refer to the same memory location:

tx1.calculateHash === tx2.calculateHash; // true

The same applies to any methods added to Transaction.prototype. Suppose that
you add a new method called displayTransaction that you want all objects to share:

Transaction.prototype.displayTransaction = function displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient}`;
}

As the code is set up, calling it would yield a TypeError, indicating that the JavaScript
engine tried to resolve that property but couldn’t:

TypeError: tx.displayTransaction is not a function

This error is expected because you had not configured the prototype chain:

Transaction.prototype.isPrototypeOf(tx); // false

You can fix this problem easily. As before, you can use Object.create. The following
listing shows the complete prototype configuration.

function Transaction(sender, recipient) {
 this.sender = sender;
 this.recipient = recipient;
}
Transaction.prototype.displayTransaction = function displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient}`;
}

function HashTransaction(sender, recipient) {
 if (!new.target) {
 return new HashTransaction(sender, recipient);
 }
 Transaction.call(this, sender, recipient);
}

HashTransaction.prototype.calculateHash = function calculateHash() {
 const data = [this.sender, this.recipient].join('');

Listing 2.6 Configuring the prototype chain using the constructor functions pattern

33Constructor functions

e
ue.
e,

ect

n.
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
}

HashTransaction.prototype = Object.create(Transaction.prototype);
HashTransaction.prototype.constructor = HashTransaction;

const tx = new HashTransaction('luis@tjoj.com', 'luke@tjoj.com');
const tx2 = new HashTransaction('luis@tjoj.com', 'luke@tjoj.com');

Transaction.prototype.isPrototypeOf(tx); // true

tx.calculateHash === tx2.calculateHash; // true
tx.displayTransaction === tx2.displayTransaction; // true

tx.__proto__.__proto__;
// Transaction { displayTransaction: [Function: displayTransaction] }

From the caller’s point of view, whether you pack all the properties into a single object
or use prototype resolution, both pieces of code behave and are called in exactly the
same way. Internally, the object layout in memory is different, but it’s abstracted away
by the powerful and efficient JavaScript engine. Figure 2.3 illustrates the inner work-
ings of listing 2.6.

Links prototypes for the lookup mechanism to
work in case you need to resolve properties

from Transaction.prototype

Fixes or sets th
constructor val
Without this lin
tx would be a
Transaction obj
or constructed
from Transactio

[[Prototype]]

Object.create

{}

Object.prototype

[[Prototype]]

HashTransaction Transaction sender
recipient

calculateHash

.constructor .constructor

Function

.constructor.constructor

HashTransaction.prototype Transaction.prototypetx

[[Prototype]]

const tx = new HashTransaction(...)

1. When a new object is instantiated,
each constructor is in charge of
establishing the prototype chain. 2. The prototype chain is connected

using each constructor’s prototype
property, ending at Object.prototype.
In this case, Object.create creates this link.

.constructor

4. Every C.prototype is an object
with a constructor property that
points to the constructor function.

3. By default, every object
inherits Object.prototype.

Figure 2.3 The instantiation of tx per listing 2.6, together with a complete picture of all prototype links and
constructor references. In JavaScript, constructor functions automatically obtain a reference to the prototype
property upon instantiation with the new keyword. The navigation annotated with [[Prototype]] represents the
internal __proto__ link between objects.

34 CHAPTER 2 Inheritance-based object modeling
Although constructor functions are a bit more sophisticated and powerful than tradi-
tional object literals, the drawback of using this pattern is that it leaks a lot of the inter-
nal plumbing of JavaScript’s prototype mechanism, as you need to deal with the nitty-
gritty details of the prototype configuration. If you don’t write everything perfectly,
you run the risk of strange and unexpected behavior.

As mentioned earlier, always remember to call the constructor with new. Many devel-
opers forget. Again, using the new keyword with a function implicitly sets what this
points to in newly created objects. This task has been a nuisance because forgetting to
write it changes the resulting object’s context, so we needed to include the defensive
bit of code I highlighted earlier:

if (!new.target) {
 return new HashTransaction(sender, recipient);
}

Old-timers probably remember that the workaround (pre-ECMAScript 2015) was to
insert the control in the following listing into the body of each constructor.

if (!(this instanceof HashTransaction)) {
 return new HashTransaction(sender, recipient);
}

Let’s look at what could happen if you didn’t. Suppose that instead of writing the pre-
ceding control code, you left it as

function HashTransaction(sender, recipient) {
 Transaction.call(this, sender, recipient);
}

Then you tried to create a new instance:

const instance = HashTransaction('luis@tjoj.com', 'luke@tjoj.com');

Oops! This code throws a TypeError because the implicit this context is undefined.
The error message is alluding to setting a member property of undefined, but not to
the actual user error:

TypeError: Cannot set property 'sender' of undefined

Difference between __proto__ and prototype
Reading the sample code, you have encountered references to two properties:
__proto__ and prototype. As I said earlier, __proto__ is discouraged, but proto-
type isn’t. In case you’re wondering what the difference is, __proto__is the object
used in the lookup chain to resolve methods, whereas prototype is the object used
to build__proto__when you create an object with new.

Listing 2.7 Pre-ECMAScript 2015 way to check for proper constructor call

35Constructor functions
Here, the developer forgot to write new in front of the function call:

const instance = new HashTransaction('luis@tjoj.com', 'luke@tjoj.com');

Now let’s look at a different, more subtle trap. Suppose that we want transactions to
have a descriptive name too:

function HashTransaction(name, sender, recipient) {
 Transaction.call(this, sender, recipient);
 this.name = name;
}

HashTransaction.prototype = Object.create(Transaction);

Now create a new instance:

 const instance = new HashTransaction(
 'Coffee purchase',
 'luis@tjoj.com',
 'luke@tjoj.com'
);

Boom! Another type error occurs. This time, the error is even more cryptic and doesn’t
happen in all JavaScript engines:

 TypeError: Cannot assign to read only property 'name' of object
 '[object Object]'

Can you find the issue? Don’t worry; I’ll spare you from wasting your time. The issue is
forgetting to link prototypes correctly. The code should have read

HashTransaction.prototype = Object.create(Transaction.prototype);

Again, writing this code manually every time is painful, leading to different behavior
that easily escapes you or any linting tool you use.

Reducing boilerplate
Using the Node.js util library, you can cut down a bit on boilerplate code so that you
can avoid making some mistakes. Instead of explicitly writing the prototype augmen-
tation statement

HashTransaction.prototype = Object.create(Transaction.prototype);

you can use util.inherits to accomplish the same task, saving you from making
the same mistake again:

require('util').inherits(HashTransaction, Transaction);

36 CHAPTER 2 Inheritance-based object modeling
This idea of using a constructor function with new to create new instances is what we
know today as the pseudoclassical model. With the advent of ECMAScript 2015, this
model has been largely replaced by a more familiar, streamlined class-oriented model
that also addresses the amount of boilerplate needed. In fact, with classes, forgetting
to write new when invoking a constructor now generates a clear error, as in this exam-
ple for a Transaction class:

const tx = Transaction(...);

TypeError: Class constructor Transaction cannot be invoked without 'new'

Section 2.3 explores the advantages of classes, as well as some of the newer proposals
that accompany them.

2.3 Class-based inheritance
In this section, we’ll pick up the discussion of the classes and prototypes dichotomy.
Next, we’ll look at how the mental model of classes makes it simpler to represent inheri-
tance hierarchies, as well as provide the syntactical advantage of cleaning up and
smoothing the rough edges over the complex boilerplate code of constructor functions.

 We’ve been trained to think that the only form of object orientation is through
classes, and that’s not the case. Class-oriented does not equate to object-oriented, and
JavaScript was an object-oriented language long before classes.

 Classes were introduced to solve a specific problem, which is to make domain model-
ing in terms of inheritance easier, especially for developers coming from class-oriented
languages such as Java, C#, and TypeScript. All the cruft and boilerplate code of proto-
type references had to be removed. Ideally, TC39 should have done this in a way that
remained compatible with JavaScript’s origins, but the community clamored for the
familiar class-like design.

 In a language such as Java, a class is the basic unit of computation. Every object
derives from some class, which provides the template that gets filled with data and
allocated in memory during the process of instantiation. During this time, all of a
class’s member properties, together with any inherited properties, get copied into
a new object and populated at construction time.

 As you learned in section 2.2. however, prototypes in JavaScript work differently.
Prototypes are well-formed, concrete objects that get created at the same time they are

(continued)

If you read the documentation, however, you’ll find that the Node.js community dis-
courages this practice in favor of using class and extends, indicating that calling
inherits with prototypes is “semantically incompatible.” You don’t say! Earlier, I
briefly alluded to the fact that prototypes and classes are incompatible. Section 2.3
evaluates this topic in detail.

37Class-based inheritance
declared (object literal) or as a byproduct of calling a function (constructor func-
tion), not through a separate instantiation process involving some inanimate blue-
print or template. In fact, you can use a prototype object as you would any other
before it’s even added to any inheritance chain.

 Remember that the key factor that separates JavaScript from a language such as
Java is that JavaScript links to instead of copies from objects higher up in the chain. In
chapter 3, we’ll discuss patterns that rely heavily on linking and delegation.

 In terms of classes, inheritance is configured with keywords class and extends.
Although inheritance looks dramatically different from direct prototype references,
it’s syntactic sugar over constructor functions (pseudoclassical model) that accom-
plishes the same thing. As an example, de-sugaring a class like

class Transaction {
 constructor(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 }
 displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient}
 for ${this.funds}`;
 }
}

is analogous to

function Transaction(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
}

Transaction.prototype.displayTransaction = function displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient}
 for ${this.funds}`;
}

Another enormous difference from class-based languages is that JavaScript objects can
access parent properties declared even after the child object was instantiated. Inher-
ited properties from some base object are shared across all instances of child objects,
so any changes to it dynamically ripple to all instances as well, which might lead to
undesired, hard-to-trace behavior. This powerful, yet dangerous, mechanism leads to a
well-known issue called prototype pollution. Encapsulation certainly helps, which is
why exporting functions to build your objects as discussed in section 2.2.1 is much bet-
ter than exporting the actual objects literals themselves. By the same token, exporting
classes has the same benefits.

 Let’s look at the pros and cons of classes more concretely. To do so, we’ll refactor
Transaction yet again, this time using classes, and add a bit more code toward the

38 CHAPTER 2 Inheritance-based object modeling

th
priv
and
decl
real-life implementation that we’ll need for the rest of the book. As listing 2.8 shows,
funds is now a property of Transaction, and we’ve added support for computing
transaction fees, which is a common banking task.

 To illustrate the ease with which classes allow you to set up the prototype chain,
let’s refactor Transaction and HashTransaction. I’ll also take the opportunity to
showcase new syntax proposals related to private class fields (http://mng.bz/YqVB)
and static fields (http://mng.bz/5jgB) that you may not be familiar with.

class Transaction {
 sender = '';
 recipient = '';
 funds = 0.0;
 #feePercent = 0.6;

 constructor(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 }

 displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient}
 for ${this.funds}`;
 }

 get netTotal() {
 return Transaction.#precisionRound(this.funds * this.#feePercent, 2);
 }

 static #precisionRound(number, precision) {
 const factor = Math.pow(10, precision);
 return Math.round(number * factor) / factor;
 }
}

class HashTransaction extends Transaction {
 transactionId;
 constructor(sender, recipient, funds = 0.0) {
 super(sender, recipient, funds);
 this.transactionId = this.calculateHash();
 }
 calculateHash() {
 const data = [
 this.sender,
 this.recipient,
 this.funds
].join('');
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;

Listing 2.8 Transaction and HashTransaction objects defined using classes

Declares public fields for this class with
default values. I recommend using default
values, because they help code editors
perform rudimentary type hinting for you.

Uses
e static

ate field
 method
arations

The prototype setup is
cleanly tucked away behind
the use of class and extends.

Uses the keyword super to invoke
the parent constructor. When you
override a constructor, you must
remember to invoke the super
constructor with the required
arguments as the first line.

http://mng.bz/YqVB
http://mng.bz/5jgB

39Class-based inheritance
 }
 return hash**2;
 }

 displayTransaction() {
 return `${this.transactionId}: ${super.displayTransaction()}`;
 }
 }

const tx = new HashTransaction('luis@tjoj.com', 'luke@tjoj.com', 10);
tx.displayTransaction();

// Prints:
// 64284210552842720: Transaction from luis@tjoj.com to luke@tjoj.com for 10

At a glance, the refactoring done in listing 2.8 looks clean, terse, and elegant. I took
the liberty of embellishing the code a little by adding private access to variables that
need to be encapsulated, as well as a couple of private static functions for validation.
As you know, these functions are shared by all instances, giving us true private access
control. So querying for a private field from outside the class throws a SyntaxError:

tx.#feePercent; // SyntaxError

It’s worth pointing out the use of private fields and the private methods feature, pre-
fixed with the hash (#) modifier. This feature was much needed to get proper encap-
sulation with classes, something you could have done by using modules and closures
with the Module pattern, shown in listing 2.9 for comparison. (I’ll revisit this pattern
in chapter 6.) By the same token, private fields and privileged methods are emulated
by taking advantage of the closure or lexical scope that exists within the class—a func-
tion behind the scenes.

const Transaction = (function() {

 const feePercent = 0.6;

 function precisionRound(number, precision) {
 const factor = Math.pow(10, precision);
 return Math.round(number * factor) / factor;
 }

 return {
 construct: function(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 return this;
 },

Listing 2.9 Transaction object implemented using the Module pattern

Private variables and/or
privileged functions

Public variables
and/or functions

40 CHAPTER 2 Inheritance-based object modeling
 netTotal: function() {
 return precisionRound(this.funds * feePercent, 2);
 }
 }
})();

const coffee = Transaction.construct('luke@tjoj.com', 'ana@tjoj.com', 2.5);
coffee.netTotal(); // 1.5

With classes, the private state is visible only to methods in the scope of the class itself—
also known as privileged. Also, static methods such as static #precisionRound won’t
unnecessarily leak out to outside users—something that is cumbersome to achieve
with regular constructor functions or even the Module pattern.

 Taking a look back at listing 2.8, do you see a reference to the prototype property
anywhere in this snippet of code? Nope! Classes have a well-defined structure, which
makes them great at abstracting the mundane prototype details away from you and,
hence, are less error-prone. Also, they offer a syntactical advantage for grouping data
and behavior in a cohesive manner. Furthermore, class and extends literally put the
icing on the cake for us and make third-party libraries such as Prototype’s extend,
Lodash’s _.extend, or even Node’s util.inherits obsolete. Figure 2.4 illustrates this
new, simplified mental model.

This figure is somewhat similar to figure 2.3 but severely cuts the number of artifacts
to achieve the same prototype configuration. The basic resemblance is deliberate
because classes work like functions in JavaScript behind the scenes. The most obvious dif-

HashTransaction Transaction Objecttx

3. The old constructor functions
are now referred to as “classes”

2. All properties that are part
of the class definition will
be placed in the C.prototype
object automatically. Also calls
to Object.create are removed
in favor of extends

const tx = new HashTransaction(...)

1. When a new object is instantiated,
the prototype chain is created behind
the scenes. Even though usage of the
C.prototype is gone from userland
code, it’s still used internally

[[Prototype]]

calculateHash
transactionId

[[Prototype]]
sender
recipient
netTotal
funds

4. In the class-based model, you can
think of all classes as inheriting
from a global class called Object

[[Prototype]]

extends extends

Figure 2.4 Building the HashTransaction class and its ancestor Transaction. Instances of
HashTransaction will inherit all the public fields present in the parent. Using class and extends properly
sets up the prototype chain so that property lookup is done effectively and constructor references line up perfectly.

41Summary
ference from figure 2.3, however, is that all of a class’s properties (fields and methods)
are automatically part of the object’s prototype, accessible via the internal __proto__
object. You don’t have the option that you did with constructor functions. You lost that
flexibility in favor of more structure.

 Creating a new instance looks like the previous pseudoclassical approach (hence
its name), with no changes:

const tx = new HashTransaction(
 'luis@tjoj.com',
 'luke@tjoj.com',
 10
);
tx.transactionId; // 197994095955825630

On the surface, this code looks clean and compact. Classes are simpler to work with
than constructor functions, without a doubt. But it’s important to realize that you’re
adding a familiar façade over prototypes only to be able to think of inheritance as
done in a class-oriented language.

 This chapter covered two object construction patterns: constructor functions and
classes. Both are inheritance-centric in that one way or another, you need to explicitly
configure how child objects (or classes) relate to parent objects (or classes). Chapter 3
takes a different approach, presenting patterns that shift the mental model from
inheritance to behavior delegation and linking.

Summary
 JavaScript offers many choices for building objects, including prototypal inheri-

tance, constructor functions, and classes.
 The phrase prototype inheritance is an oxymoron because the idea of a shared

linked prototype object is contradictory to the class inheritance model, in
which instances gain copies of the inherited data.

 Constructor functions have been the standard mechanisms used to mimic the
idea of classes in JavaScript.

 Classes smooth over the details of the prototype configuration for newcomers
or developers coming from other class-based languages and have become the
preferred choice of JavaScript developers.

 The class syntax can blur your understanding of JavaScript’s prototype inheri-
tance mechanism. Classes are useful, but remember that JavaScript is different
from other class-based languages you may have seen or used.

Linked, compositional
object models
Class inheritance is very rarely (perhaps never) the best approach in JavaScript.

—Eric Elliot

In chapter 2, we looked at some of the scaffolding needed to create prototype
chains to model inheritance and how classes streamline this process. Remember
that the goal of using inheritance is to improve reusability. Now we’ll continue the
topic of assembling your objects to achieve the same level of code reuse, but in a
way that doesn’t require you to think in terms of inheritance.

 The first technique, discovered by Kyle Simpson, is called Objects Linked to
Other Objects (OLOO) and relies on Object.create to create associations among
the objects that constitute your domain model. This technique has the simplicity of
classes of stripping away the complicated prototype jargon while setting up the

This chapter covers
 Understanding the Objects Linked to Other

Objects (OLOO) pattern of behavior delegation
with linked objects

 Combining classes with mixins for concatenative
dynamic extension

 Using Object.assign and the spread operator to
build new objects
42

43Types of object links
prototype chain properly. This pattern is interesting because it allows you to look at
your domain model as a collection of peer objects that delegate to one another to
carry out their work.

 The second approach is based on composing objects that capture a small set of
behavior known as mixins to create a much richer model, as you can see on full display
in the works of Eric Elliot, Douglas Crockford, and other JavaScript experts. In this
case, instead of acquiring properties from a long prototype chain, mixins allow you to
integrate various independent pieces of behavior and/or data into a single object. A
good example of this technique outside JavaScript is a CSS preprocessor such as Sass.
You can use @mixins to group repetitive stylesheet information and apply it to many
rule sets. In many cases, this technique is preferred to @extends.

 In this chapter, we’ll be talking about links between objects as being explicit (set
directly in code) or implicit (wired via JavaScript’s runtime). These types of links are
important to understand before jumping into the patterns mentioned in this section.

3.1 Types of object links
In JavaScript, you can associate objects in two ways: implicitly and explicitly. Both types
of association allow one object to send messages to another (aka delegation), but they
behave a bit differently. Figure 3.1 illustrates the difference.

Let’s start with implicit (implied) links.

3.1.1 Implicit

An implicit link is known only internally—in other words, is not visible in the code. In
JavaScript, links to objects that delegate behavior by using the [[Prototype]] internal
reference can be considered implicit because the runtime uses it to send messages to

Foo

Foo

Requester

UpperCaseFormatter

Delegate

Foo.saySomething('hello') this.formatter.format(msg)

Explicit

[[Prototype]]

__proto__.format(msg)

Implicit

Requester Delegate

Delegate object
(private) accessed
by name

Delegate object
accessed via JS
resolution
mechanism

Foo.saySomething('hello') UpperCaseFormatter

Figure 3.1 Explicit delegation occurs through a property known directly by name. Implicit delegation occurs
through JavaScript’s prototype lookup process, chained by the internal __proto__ property.

44 CHAPTER 3 Linked, compositional object models
other objects (up the chain, in the case of inheritance) on your behalf as part of prop-
erty resolution, as shown in the next listing.

const Foo = Object.create(UpperCaseFormatter);
Foo.saySomething = function saySomething(msg) {
 console.log(this.format(msg));
}
Foo.saySomething('hello'); // Prints HELLO

The association formed is one in which object A delegates to B by an “is a” relation-
ship, and the same object context (this) is used to access the full set of behavior. In
this example, we say that Foo “is a” UpperCaseFormatter.

 Implicit linking or delegation is the fundamental method of accessing properties
and behavior in prototype-based languages. This method is used by all the object con-
struction patterns we’ve discussed so far (classes and constructor functions) and is also
used by OLOO and mixins, which we’ll discuss in sections 3.2 and 3.5, respectively.

3.1.2 Explicit

On the other hand, objects are linked explicitly when the link is well-known and visi-
bly set in code, perhaps through a public or private property. I don’t cover this tech-
nique in the book, but it’s important to look at a simple example for comparison,
shown in the next listing.

const UpperCaseFormatter = {
 format: function(msg) {
 return msg.toUpperCase();
 }
};

const Foo = {
 formatter: UpperCaseFormatter,
 saySomething: function print(msg) {
 console.log(this.formatter !== null
 ? this.formatter.format(msg)
 : msg
);
 }
};

Foo.saySomething('hello'); // Prints HELLO

Again, if we were to label these relationships, when the relation is explicit, we say
that some object A delegates to B with a “uses” label, also known as object composi-
tion. In this case, Foo uses UpperCaseFormatter to carry out its work, and both
objects have different life cycles. In this configuration, it’s sensible to check whether

Listing 3.1 Implicit reference between Foo and UpperCaseFormatter

Listing 3.2 Explicit link between Foo and UpperCaseFormatter

format is resolved through
the prototype chain.

Explicitly passes an
object to another

45OLOO
this.formatter !== null. Visually, you can see the explicit relationship because
UpperCaseFormatter’s properties are accessed by delegating through a known refer-
ence (formatter), explicitly typed in the code.

 In the case of an implicit link, the life cycles of both objects are intertwined, in that
UpperCaseFormatter’s properties would be accessed via this; it’s understood that the
runtime is resolving these properties via __proto__.

 Now that you understand this fundamental difference, let’s begin with a pattern
that uses implicit links to achieve behavior delegation.

3.2 OLOO
The OLOO pattern was presented by Kyle Simpson in his book series You Don’t Know JS
(mentioned in chapter 2) as well as his entertaining and thorough video series “Deep
JavaScript Foundations” (https://frontendmasters.com/courses/javascript-foundations).
This pattern is interesting to study because it changes our mindset when it comes to
visualizing parent-child relationships among objects. OLOO’s view of differential
inheritance is different from the mental model of classes in that it doesn’t consider
child objects to derive from a base object. Rather, it considers objects peers that link
together and delegate functionality by passing messages to each other. All that inheri-
tance-related terminology disappears, and we no longer say that an object inherits from
another; we say that it links to another, which is a much simpler model to understand.

 Furthermore, OLOO keeps the good parts of the language while throwing away the
deceiving class-based design and the complex prototype configuration of the construc-
tor function pattern. OLOO still uses the [[Prototype]], but that mechanism is cleverly
hidden behind Object.create and provides a much simpler userland model for design-
ing objects. If you were to look under the hood of Object.create (http://mng.bz/
zxnB), you’ll see the minimal implementation of the constructor functions pattern,
shown in the next listing.

Object.create = function(proto, propertiesObject) {
 if (typeof proto !== 'object' && typeof proto !== 'function') {
 throw new TypeError('Object prototype may only be an Object: ' +
 proto);
 }

 function F() {}
 F.prototype = proto;
 return new F();
};

Now that we know that Object.create takes care of the boilerplate code for us, let’s
take proper advantage of it and use it to wire up the chain connecting all our objects.
I’ll start showing you this pattern with a simple example that introduces some of the

Listing 3.3 Under the hood of Object.create

Creates a new superfluous
constructor function, F

Sets the prototype of the
constructor function

Returns the new object
invoking the new keyword

https://frontendmasters.com/courses/javascript-foundations/
http://mng.bz/zxnB
http://mng.bz/zxnB
http://mng.bz/zxnB

46 CHAPTER 3 Linked, compositional object models
components of this pattern. In this snippet of code, we’ll begin to play with the con-
cept of the blockchain data structure. A Blockchain is an object that stores consecu-
tive elements, called blocks:

const MyStore = {
 init(element) {
 this.length = 0;
 this.push(element);
 },
 push(b) {
 this[this.length] = b;
 return ++this.length;
 }
}

const Blockchain = Object.create(MyStore);

const chain = Object.create(Blockchain);
chain.init(createGenesisBlock);
chain.push(new Block(...));
chain.length; // 2

In this example, we first link the objects MyStore and Blockchain; then we link the
object chain (which we consider to be the actual instance object with all the function-
ality) with Blockchain. In the definition of MyStore, the init initializer method is in
charge of typical object constructor logic that sets the properties of the new instance.
As you can see from the preceding code snippet, chain properly delegates to proper-
ties of its peers: init, push, and length.

 Another interesting aspect of OLOO is that after Object.create(Blockchain) is
called, all the links get created in memory. Blockchain knows about init and push
because of the prototype chain, but the objects have not been initialized because init
has not been called. At this point, the shape of the object is in memory and instanti-
ated, but actual initialization of the data happens when init is called, which sets
everything in motion, populates the first block in the chain, and returns a ready-to-use
object to its caller. As you can see, the objects are linked properly:

MyStore.isPrototypeOf(Blockchain); // true
chain.__proto__.init // [Function: init]

You can think of init as having some of the responsibilities of a class constructor. But
unlike a class constructor, which performs construction and initialization at the same
time, OLOO separates the two actions as different steps. Separating declaration from
use allows you to define and lazily pass around the actual object representation (a
template, perhaps) as a first-class object, similar to passing a class definition around.
Then you can initialize this lazily built, minimal object with its full set of data only
when needed.

 This pattern resembles the Builder pattern (https://en.wikipedia.org/wiki/Builder
_pattern), which is used a lot in object-oriented design.

https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Builder_pattern

47OLOO
 But if you’d like to call both steps fluently inline, you can do so easily by returning
this from the init method:

const MyStore = {
 init(element) {
 this.length = 0;
 this.push(element);
 return this;
 },
 //...
}

const Blockchain = Object.create(MyStore);

const chain = Object.create(Blockchain).init(createGenesisBlock);
chain.push(new Block(...));
chain.length; // 2

A noticeable difference with OLOO compared with constructor functions and classes
is that the reliance in the prototypal inheritance is much more controlled and less
exposed. When MyStore.isPrototypeOf(Blockchain) is true, you can’t inadver-
tently change the shape of all initialized objects, protecting you from prototype pollu-
tion. In fact, MyStore and Blockchain are not constructor functions at all, so they do
not have a prototype property to do this:

MyStore.prototype; // undefined
Blockchain.prototype; // undefined

Now that you’ve seen the pattern in a simple scenario, let’s use this same idea to refac-
tor Transaction. The next listing shows a simple OLOO implementation; listing 3.5
shows the full implementation.

const Transaction = {
 init(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 return this;
 },
 displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient} for
 ${this.funds}`;
 }
}

const HashTransaction = Object.create(Transaction);

HashTransaction.calculateHash = function calculateHash() {
 const data = [this.sender, this.recipient, this.funds].join('');

Listing 3.4 HashTransaction with simple object linking

The init method is the exact
equivalent of a class constructor
(merely a convention; you can use
any method name you like).

Because the object is returned directly, results
in the properties of this object contained
inside the specialized object

48 CHAPTER 3 Linked, compositional object models

en

all

m
ac
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
}

const tx = Object.create(HashTransaction)
 .init('luis@tjoj.com', 'luke@tjoj.com', 10);

tx.sender; // 'luis@tjoj.com'
tx.recipient; // 'luke@tjoj.com'
tx.calculateHash(); // 64284210552842720
tx.displayTransaction();

Everything should look straightforward so far. The only thing we’ve added compared
to the MyStore example is a bit more functionality to each object. Figure 3.2 shows the
structure of the objects and the links among them.

Figure 3.2 shows that you can establish implicit links among objects and at the same
time remove the prototypal boilerplate code that you would have otherwise needed to
write with classes and (to greater extent) constructor functions. The following listing
builds out the full-fledged Transaction object in all its glory.

const Transaction = {
 init(sender, recipient, funds = 0.0) {
 const _feePercent = 0.6;

 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);

 this.netTotal = function() {
 return _precisionRound(this.funds * _feePercent, 2);
 }

 function _precisionRound(number, precision) {
 const factor = Math.pow(10, precision);
 return Math.round(number * factor) / factor;
 }

Listing 3.5 Modeling Transaction with behavior delegation (OLOO)

Uses Object.create to build
new objects and nicely
separate prototype linkage
from object initialization

This method is invoked
through the prototype chain.

HashTransaction calculateHash Transaction

sender
recipient
funds
init
displayTransaction

tx

[[Prototype]]

Object.create

[[Prototype]]

Object.create

Link Link

Figure 3.2 Surface view of how the three object peers are linked

The entire chain is based on
simple objects, with Transaction
at the base of the hierarchy.

The init functions are analogous to a
class’s constructor. Also, the use of
the function keyword is deliberate to
establish the proper behavior of this.

Private
properties
are nicely

capsulated
in the

object’s
closure,

owing only
privileged
ethods to

cess them.

49OLOO

Equiva
the

super w
child
cons
 return this;
 },

 displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient}
 for ${this.funds}`;
 }
}

const HashTransaction = Object.create(Transaction)

HashTransaction.init = function HashTransaction(
 sender, recipient, funds
) {
 Transaction.init.call(this, sender, recipient, funds);
 this.transactionId = this.calculateHash();
 return this;
}

HashTransaction.calculateHash = function calculateHash() {
 // same as before...
}

This code is the same as in listing 3.4 but adds more initialization logic to Hash-
Transaction to clearly separate initialization from instantiation. Figure 3.3 shows a
more complete diagram.

Because I’m using a plain function as
constructor, there is no implied this,
so we need to return it ourselves.

Using JavaScript’s
Object.create properly creates
the implicit delegation linkage
using [[Prototype]].

The init functions are
analogous to a class’s
constructor. Also, the
use of the function
keyword is deliberate
to establish the proper
behavior of this.

lent to
 use of
ithin a
 class’s
tructor

{}

Object.prototype

init
displayTransaction

init
transactionId
calculateHash
sender
recipient
funds

[[Prototype]]

Object.create

[[Prototype]]

Object.create

.init

[[Prototype]]

1. With OLOO, there are no constructor
functions or classes to deal with—only
plain objects. Instead, init is used to
perform any instantiation logic.

3. Object.create abstracts setting
all prototype references.

tx HashTransaction Transaction

2. Objects use the prototype
resolution mechanism to link to
other objects in a peer-to-peer
manner.

Object.create

Figure 3.3 A full-fledged implementation of the OLOO pattern to implement HashTransaction,
linking to Transaction to delegate basic functionality

50 CHAPTER 3 Linked, compositional object models
As figure 3.3 shows, the init function nicely encapsulates any private state inside its
lexical scope (à la the Module pattern) and exposes only what’s needed through this.
You could take the opportunity to define any private functions that are needed as part
of object construction, and nothing would leak out to the caller. Also, you see a very
visible management of the object context (this) being passed from one init block to
the next upstream until reaching the parent object. This is not done to create the pro-
totype linkage (as Object.create does that for you), but to initialize the entire chain
up to the base object.

 Up to now, you’ve learned about object modeling techniques that share the idea of
using the prototype resolution mechanism with implicit links to delegate to other
objects, whether that delegation is up the chain or along the chain. But all these tech-
niques lack the ability to share behavior from more than one object, because proto-
types establish a single, unidirectional path in which properties are dynamically
resolved. These situations do not occur frequently in software, but when they do, the
prototype chain is insufficient to model them correctly. Take a simple example
extracted from nature. Amphibians are animals with both aquatic and terrestrial char-
acteristics. If you were to map out the objects Amphibian, Aquatic, and Terrestrial,
how could you model this relationship in a prototypal manner so that Amphibian links
to both AquaticAnimal and TerrestrialAnimal? Multiple inheritance, perhaps?

 You don’t need to use inheritance at all. Let’s explore another software construc-
tion pattern that relies on object composition. It’s important to add that when I
mention composition of objects, I’m not referring to the well-known object-oriented
pattern that goes by that name. This pattern is much simpler. Here, I’m referring to
the ability to assemble a rich object by gluing together small individual pieces or
traits—composition in the structural sense. JavaScript’s object model is one of a kind
that lets us perform this task, and the API to use is Object.assign. Section 3.3 dis-
cusses this API first and then shows you how it’s used to compose objects. You’ll use
the API to implement mixins in section 3.4.

3.3 Understanding Object.assign
Software evolves quickly, and requirements change drastically. The problem with
prototypal object models is that they tend to become too rigid and brittle over time,
making it difficult to introduce big changes to your model with the guarantee that
those changes won’t break something else up or along the chain of delegation. Mis-
handling base objects higher up in the hierarchy may cause rippling downstream
effects throughout your model—an issue known as the fragile base class problem.
You can use patterns to minimize this problem by physically copying properties
down to derived objects.

 State copying over state sharing isn’t a new concept. Instead of assembling rigid
hierarchies of objects, why don’t you build objects by handing them copies of all the
properties they need? With JavaScript, in which objects are dynamic bags of proper-
ties, this process is simple. JavaScript allows you to glue together various pieces (bags)

51Understanding Object.assign
of properties (call them partial objects, if you will) to create a whole, feature-rich
object, like pouring the contents of several bags into a larger one. This process is done
not by linking to a prototype, but by integrating or merging copies of simpler, individ-
ual objects.

 Aside from instantiation, from the perspective of the user, using objects built this
way feels no different from the approaches listed earlier; the shape of the object on
the surface is the same. From a code-reasoning point of view, however, the process is
radically different. In the following sections, we explore the JavaScript APIs that sup-
port this process and some behind-the-scenes features that make it possible.

3.3.1 Object.assign uncovered

You can use Object.assign to merge the properties of various objects. In this section,
we’ll discuss in depth how to use this API. Object.assign is a nice little Swiss army
knife to have in your tool belt. It comes in handy in several use cases. Suppose that
you’re developing a mashup of several API responses and would like to deliver the
response body as a single JSON. Another common task is to perform a shallow clone
by assigning the properties of an object to a new, empty object {}. Many libraries that
accept configuration objects as arguments use Object.assign to provide defaults. In
the next listing, the function doSomething takes a config object that allows the user to
specify settings for the hypothetical logic carried out by this function.

function doSomething(config = {}) {
 config = Object.assign(
 {
 foo: 'foo',
 bar: 'bar',
 baz: 'baz'
 }, config);

 console.log(`Using config ${config.foo}, ${config.bar}, ${config.bar}`);
}

doSomething(); // Prints Using config foo, bar, bar
doSomething({foo: 'hello'}); // Prints Using config hello, bar, bar

By merging the user-provided object with defaults, it’s easy to obtain the desired
config. Object.assign copies the enumerable properties that one or more objects
owns (as defined by Object#hasOwnProperty) into a target object, returning the tar-
get object. The following listing shows a simple example.

const a = {
 a: 'a'
};

Listing 3.6 Using Object.assign to implement options with defaults

Listing 3.7 Using Object.assign to merge two objects into a new object

Configuration
defaults

These properties are enumerable and
owned by the object, so they get copied.

52 CHAPTER 3 Linked, compositional object models
const b = {
 b: 'b'
};

Object.assign({}, a, b); //{ a: 'a', b: 'b' }

In this case, all the objects in question have their properties as enumerable: true,
which means that Object.assign will scan and copy them.

 Now consider a non-enumerable property, which will be skipped:

const a = {
 a: 'a'
};

const b = {};
Object.defineProperty(b, 'b', {
 value: 'b',
 enumerable: false
});

Object.assign({}, a, b); //{ a: 'a' }

You can find enumerable properties by iterating over an object, using a construct such
as for...in for properties that have enumerable: true. You can control this meta-
attribute as well as three others (writable, configurable, and value) at the point of
definition. Recall from chapter 2 that the meta-object containing these four attributes
is known as a property or data descriptor.

 Following Object#hasOwnProperty, owned properties refer to properties found
directly in the source objects, not properties accessible via their prototype. In the
following code snippet, the inherited property parent is never assigned to the target
object:

const parent = {
 parent: 'parent'
};

const c = Object.create(parent);
c.c = 'c';

Object.assign({}, c); // { c: 'c' }

Now consider a property with the same name, with the objects being merged. In this
case, the rule is that the object to the right overrides the set of properties of the object
to the left in the list. Here’s a simple use case:

These properties are enumerable and
owned by the object, so they get copied.

53Understanding Object.assign
This rule is important, and I’ll circle back to it in section 3.4.2.
 At this point, you may be thinking that Object.assign simply copies properties

right to left. Well, not always. There’s a subtle difference between definition and
assignment.

3.3.2 Assignment vs definition

Assigning a value to an existing property doesn’t define how a property behaves, the
way that Object.defineProperty does. Assignment falls back to defining a property
only if an assignment is made for a property that doesn’t exist. Hence, for new prop-
erties, JavaScript uses the [[DefineOwnProperty]] internal process as outlined in
the specification, and for existing properties, it uses [[Set]], which won’t alter the
property’s meta-attributes, as happened in our first example with doSomething (see
the following listing).

function doSomething(config = {}) {
 config = Object.assign(
 {
 foo: 'foo',
 bar: 'bar',
 baz: 'baz'
 }, config);

 console.log(`Using config ${config.foo}, ${config.bar}, ${config.bar}`);
}

doSomething({foo: 'hello'});

Most of the time, this distinction makes no difference, but sometimes it does. Let’s
explore the difference with another example:

const Transaction = {
 sender: 'luis@tjoj.com'
};
Object.assign(Transaction, { sender: 'luke@tjoj.com' });

const a = {
 a: 'a'
};

const b = {
 b: 'b'
};

Object.assign({}, a, b);

//{ a: 'a', b: 'b' }

const c = {
 a: 'ca',
 c: 'c'
};

Object.assign({}, a, b, c);

//{ a: 'ca', b: 'b', c: 'c' }

Listing 3.8 Using Object.assign to assign values to new and existing properties

foo gets set to 'hello', and bar
and baz are newly defined
during Object.assign.

54 CHAPTER 3 Linked, compositional object models

expres
matc

email a
The preceding call works as expected, and sender is set to 'luke@tjoj.com'. But what
if sender wasn’t a string property, but a setter method? According to the specification,
Object.assign invokes the [[Set]] meta-operation for an existing property key. Con-
sider the scenario in the next listing.

const Transaction = {
 _sender: 'luis@tjoj.com',

 get sender() {
 return this._sender;
 },
 set sender(newEmail) {
 this._sender = Transaction.validateEmail(newEmail);
 }
};

const EMAIL_REGEX = /^(([^<>()\[\]\\.,;:\s@"]+(\.[^<>()\[\]\\.,;:\s@"]+)*)|
(".+"))@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\])|(([a-zA-Z\-0-9]
+\.)+[a-zA-Z]{2,}))$/;

Transaction.validateEmail = function validateEmail(email) {
 if (EMAIL_REGEX.test(email.toLowerCase())) {
 return email;
 }
 throw new Error(`Invalid email ${email}`);
};

Object.assign(Transaction, { sender: 'invalid@email' }); // Error!

Here, sender is considered to be an existing property and gets processed through
JavaScript’s internal [[Set]] property, causing the setter logic to execute and fail when
the email address is badly formatted.

 Now that you understand the basic workings of this built-in API, let’s use it to sup-
port our last object construction pattern: mixins.

3.4 Assembling objects using mixin composition
The idea behind composing or assembling objects is a bit different from the approaches
you’ve seen so far. With prototypes, you link to a single object to share its state and
behavior, but with mixins, you copy fine-grained pieces of multiple independent slices
of objects that together represent the entirety of the object’s API. This section teaches
you how to use Object.assign to achieve a technique called concatenative object exten-
sion with mixins.

 Think of mixins as adding flavors to your ice cream or toppings to your sandwich;
every new addition adds a twist to the overall flavor but doesn’t overpower it. Before
we dive into our final version of Transaction, let’s study a simple use case. Consider
these trivial object literals:

Listing 3.9 Object.assign invokes [[Set]] when encountering the same property name

A regular
sion that
hes valid
ddresses

Sending input with
invalid email address

55Assembling objects using mixin composition
const HasBread = {
 bread: 'Wheat',
 toasted: true
};

const HasToppings = {
 sauce: 'Ranch'
};

const HasTomatoes = {
 tomatoe: 'Cherry',
 cut: 'diced'
};

const HasMeat = {
 meat: 'Chicken',
 term: 'Grilled'
};

Our Sandwich object can be created by joining any or all of these parts:

const Sandwich = (size = '6', unit = 'in') =>
 Object.assign({
 size, unit
 },
 HasBread,
 HasToppings,
 HasTomatoes,
 HasMeat
);

const footLong = Sandwich(1, 'ft');
footLong.tomatoe; // 'Cherry'

More succinctly, you can take advantage of the spread operator:

const Sandwich = (size = '6', unit = 'in') => ({
 size, unit,
 ...HasBread,
 ...HasToppings,
 ...HasTomatoes,
 ...HasMeat
});

A mixin object like HasBread doesn’t provide much value on its own, but it can be
used to enhance some target object—Sandwich, in this case. Going back briefly to the
OLOO pattern, you may have caught a glimpse of it as the properties (methods and
data) of a parent object were added during the execution of the derived object’s con-
structor. This process repeats at every level of the linked object graph. In fact, to ease
the transition of using Object.assign as a means to define object relationships, con-
sider a slight twist on the OLOO example that combines the object-linking step

56 CHAPTER 3 Linked, compositional object models
(const HashTransaction = Object.create(Transaction)) and defines new proper-
ties on this new object, as shown next.

const Transaction = {
 init(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 return this;
 },
 displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient} for
 ${this.funds}`;
 }
}

const HashTransaction = Object.assign(
 Object.create(Transaction),
 {
 calculateHash() {
 const data = [this.sender, this.recipient, this.funds].join('');
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
 }
 }
);

A mixin is an object with simple behavior, typically made from one or two methods. In
this case, there’s one method, calculateHash, which we’ll refactor into its own object
in section 3.5.1. The simpler mixins are, the easier they are to compose and reuse in
many parts of your code. Mixins should have a narrow focus, much smaller than a
class. They could capture a single responsibility or perhaps even a slice of a responsi-
bility. It’s acceptable for a mixin to look incomplete as long as it’s self-sustaining and
has everything needed to carry out its task.

NOTE This book discusses mixins only superficially. For more information on
the mixin pattern, check out Composing Software, by Eric Elliot (https://
leanpub.com/composingsoftware).

Object composition promotes creating HAS-A or USES-A rather than IS-A relation-
ships among objects. So instead of implicitly delegating to an object’s parent, you cir-
cumvent inheritance and copy all the properties you need directly to the target object.
You can imagine this process as being analogous to squashing an inheritance hierar-
chy two or three levels deep into a single object literal. Because you’re adding new

Listing 3.10 OLOO implemented with Object.assign

Defines the properties
of HashTransaction
through assignment
using Object.assign

https://leanpub.com/composingsoftware
https://leanpub.com/composingsoftware
https://leanpub.com/composingsoftware

57Assembling objects using mixin composition
properties to an object after it’s been defined, this process is called dynamic or concat-
enative object extension.

 Mixins might sound a little complicated, but the pattern has been widely used for
some time. I mentioned its use in CSS preprocessors, but there are others uses in Java-
Script itself. In browsers, the behavior instilled by the global window object is in part
implemented by the WindowOrWorkerGlobalScope mixin. Similarly, browser events are
handled by the WindowEventHandlers mixin. These mixins are used to group a com-
mon set of properties between the global objects used in browsers (window) as well as
the Web Worker API (self). The browsers premix this code for you, of course, so that
you don’t have to, but consider a more obvious example. If you’ve ever used the popu-
lar Mocha and Chai unit testing libraries, you probably know that you can extend
their functionality by injecting new behavior dynamically, using

chai.use(function (_chai, utils) {
 // ...
});

The method name (use) is appropriate. Many other third-party libraries already
take advantage of this feature. To streamline testing with promises, for example, you
can extend Chai with the chai-as-promised (https://www.npmjs.com/package/chai-as
-promised) library:

chai.use(chaiAsPromised);

Dynamic concatenation embodies the principle of composition well: combine simple
objects to build a complex one, which we’re achieving here.

 Circling back to Transaction, we’ll use the class definition we started in chapter 2
as its core structure, with mixins to borrow shared modules of code. The first thing
you’ll notice is that the definition of calculateHash is not part of the class declaration
anymore; it was moved to an object called HasHash. Separating calculateHash into
own module will make it easier to add hashing behavior to other classes of our
domain, such as Block and Blockchain. As listing 3.11 shows, instead of a simple
object, a function allows us to configure the hashing behavior as needed with argu-
ments, such as specifying the fields of the object used as part of the hashing process.

NOTE For these mixins, because we’re returning a new object, we’re going to
use arrow functions to save some typing. A regular function declaration would
work equally well.

const HasHash = keys => ({
 calculateHash() {
 const data = keys.map(f => this[f]).join('');
 let hash = 0, i = 0;
 while (i < data.length) {

Listing 3.11 Defining the HasHash mixin

Creates a string from the
values of the specified
property keys

https://www.npmjs.com/package/chai-as-promised
https://www.npmjs.com/package/chai-as-promised
https://www.npmjs.com/package/chai-as-promised

58 CHAPTER 3 Linked, compositional object models
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
 }
});

HasHash is a mixin wrapped by a function expression, so the mixin part is this object
literal:

{
 calculateHash() {
 const data = keys.map(f => this[f]).join('');
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
 }
});

For completeness, if we replace this body of code in the OLOO example (listing 3.10),
we obtain the result in the next listing.

const Transaction = {
 init(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 return this;
 },
 displayTransaction() {
 return `Transaction from ${this.sender} to ${this.recipient}
 for ${this.funds}`;
 }
}

const HashTransaction = Object.assign(
 Object.create(Transaction),
 HasHash(['sender', 'recipient', 'funds'])
);

Listing 3.13 shows the final version of Transaction (class + mixins). This code inte-
grates all the mixins into the class prototype reference so that the same hashing func-
tionality is available to all instances of Transaction. The Object.assign call with all
mixins happens at the end.

class Transaction {
 transactionId = '';
 timestamp = Date.now();

Listing 3.12 OLOO pattern for Transaction using the HasHash mixin

Listing 3.13 Transaction object using mixin concatenation

Copies the properties of the mixin
returned by calling HasHash. By using
a function, it’s simple to specify which
properties of the object’s state the
mixin has access to as part of
calculating the object’s hash value.

The transactionId is set in the constructor by calling
calculateHash, dynamically assigned to this instance’s
prototype and available to all instances.

59Assembling objects using mixin composition
 #feePercent = 0.6;

 constructor(sender, recipient, funds = 0.0, description = 'Generic') {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 this.description = description;
 this.transactionId = this.calculateHash();
 }

 displayTransaction() {
 return `Transaction ${this.description} from ${this.sender} to
 ${this.recipient} for ${this.funds}`;
 }

 get netTotal() {
 return Transaction.#precisionRound(
 this.funds * this.#feePercent, 2);
 }

 static #precisionRound(number, precision) {
 const factor = Math.pow(10, precision);
 return Math.round(number * factor) / factor;
 }
}

Object.assign(
 Transaction.prototype,
 HasHash(['timestamp', 'sender', 'recipient', 'funds']),
 HasSignature(['sender', 'recipient', 'funds']),
 HasValidation()
)

NOTE Using a class (such as Transaction) as the target object for dynamic
mixin extension is the scenario you’ll most likely encounter in your own cod-
ing due to the popularity of classes. But you can use mixins with any of the
construction patterns discussed so far.

You may find this pattern, also known as traits, in programming languages such as
PHP (https://www.php.net/manual/en/language.oop5.traits.php). When you use
classes, all the properties are added to the class’s prototype reference. For this reason,
we use Object.assign to extend the class’s prototype dynamically and avoid having to
repeat the logic of assigning mixins every time we need a new transaction.

 Also, from a memory-efficient point of view, augmenting the prototype object
causes all transaction objects to have the same set of properties. Instantiating a new
Transaction looks the same as in chapter 2:

const tx = new Transaction('luis@tjoj.com', 'luke@tjoj.com', 10);
tx.transactionId; // 241936169696765470

Using Object.assign to glue
together (or include) the objects
that make up a Transaction The HasSignature

mixin handles
signature generation
and verification.

HasValidation groups common validation tasks
for any object (to be discussed in chapter 5).

https://www.php.net/manual/en/language.oop5.traits.php

60 CHAPTER 3 Linked, compositional object models
The important thing to notice is that although this version of Transaction is different
from the previous ones, it retains the best parts by

 Using the convenient syntax of classes to nicely group and encapsulate all the
pertinent transactional details.

 Integrating reusable pieces from other mixins for maximum code reuse.
 Separating the object definition (such as Transaction class) and mixin config-

uration from instantiation, akin to OLOO.
 Integrating only the direct, public interface of a mixin object by skipping non-

enumerable and not-owned properties (because it uses Object.assign).
 Allowing mixins to encapsulate hidden properties and methods of their own

that only its public API can use, but that do not become part of the overall
object and are not reachable from the class. The reverse is also true: mixins
don’t have access to any private (#) properties declared inside the class. Only
their public interfaces communicate, which prevents a tighter form of cou-
pling. I’ll come back to this topic in section 3.5.1.

 Avoiding deep and cumbersome prototype configurations, making objects flat-
ter and therefore simpler to use and combine with other parts of the code.

Now that you know how the mixins integrate into the bigger object, let’s evaluate the
structure of a mixin.

3.4.1 Anatomy of a mixin

In this section, we’re going to discuss the shape of the mixins used in our blockchain
application. Transaction uses two important extensions that implement the two main
cryptographic concepts underpinning blockchain technology: hashing (HasHash) and
digital signatures (HasSignature). Our current version of HasHash still does not pro-
duce cryptographically secure hashes. We need to improve that algorithm, but we’ll save
the nitty-gritty of the logic for chapter 4 and focus only on its shape for now. When we
have the public interface and calls wired up, swapping algorithms in and out is simple.

 Listings 3.14 and 3.15 show the updated structures of HasHash and HasSignature,
respectively.

const DEFAULT_ALGO_SHA256 = 'SHA256';
const DEFAULT_ENCODING_HEX = 'hex';

const HasHash = (
 keys,
 options = { algorithm: DEFAULT_ALGO_SHA256,
 encoding: DEFAULT_ENCODING_HEX }
) => ({
 calculateHash () {
 //...
 }
})

Listing 3.14 HasHash mixin

Default options passed to configure the
hashing process. Here, we’re using the SHA256
algorithm with hexadecimal encoding.

61Assembling objects using mixin composition
Because HasHash accepts a list of keys representing the properties involved in comput-
ing the hash, it could work with with any target object. Here’s an example:

const hashable = Object.assign(
 { foo: 'foo', bar: 'bar' },
 HasHash(['foo', 'bar'])
);

hashable.calculateHash(); // '1610053822743955500'

Coming back to encapsulation, assuming that the mixins are their own modules (chap-
ter 6), any data outside the scope of the mixin function (such as DEFAULT_ALGO_SHA256)
is virtually private and self-contained, as it is part of the mixin function’s closure.

 With a similar structure, the next listing contains the skeleton for HasSignature.
This mixin packs a bit more behavior.

const DEFAULT_ENCODING_HEX = 'hex';
const DEFAULT_SIGN_ALGO = 'RSA-SHA256';

const HasSignature = (
 keys,
 options = {
 algorithm: DEFAULT_SIGN_ALGO,
 encoding: DEFAULT_ENCODING_HEX
 }
) => ({

 generateSignature(privateKey) {
 //...

 },
 verifySignature(publicKey, signature) {
 //...
 }
});

The body of these methods deals with using Node.js’s crypto modules to sign the con-
tents of an object, as well as read and verify public/private key pairs, which we don’t
cover in this book. Feel free to visit the code repo for the internals. Keep in mind,
though, that in the real world of open, distributed ledgers, the public key is what iden-
tifies a user’s wallet to rest of the world. From the caller’s point of view, the next listing
shows how you would use HasSignature.

const signable = Object.assign(
 { foo: 'foo', bar: 'bar' },
 HasSignature(['foo', 'bar'])
);

Listing 3.15 HasSignature mixin

Listing 3.16 Using HasSignature to sign the contents of an object

62 CHAPTER 3 Linked, compositional object models
const publicKey = fs.readFileSync('test-public.pem', 'utf8');
const privateKey = fs.readFileSync('test-private.pem', 'utf8');

const signature = signable.generateSignature(privateKey);

signable.verifySignature(publicKey, signature); // true

You’ve seen examples of HasHash and HasSignature. I cover HasValidation (another
mixin) and its internal logic in chapter 5. Note that I named these mixins with the full
intention of showing that composition is happening, clearly establishing HAS-A rela-
tionships with the target objects, as shown in figure 3.4.

Figure 3.4 shows a theoretical or conceptual view of object composition. Practically
speaking, after the target object is formed, the Transaction class looks like figure 3.5
to the caller.

Signs the object’s
data, using the
private key

You can verify that the signature is correct
by using the corresponding public key.

[[Set]]

Object.assign

tx
New

Transaction

sender
recipient
funds

HasHash calculateHash

HasSignature verifySignature
signInput

HasValidation

[[Set]]

[[Set]]

validate
Class

2. The call to create
a new Transaction
looks at the class
already assembled
with all mixin
properties.

. Mixins are used to dynamically enhance
the definition of the class by setting the
properties of Transaction.prototype. This
is done so that all objects of the same
class have the same set of properties.Object.assign

Object.assign

Figure 3.4 When using composition, the mechanism by which an object is built consists of gluing together
other independent objects: HasHash, HasSignature, and HasValidation. The properties of each one get
mashed up into a single source, forming a single object from the user’s point of view.

Transaction

sender
recipient
funds
calculateHash
verifySignature
signInput
validate

From HasHash

From HasSignature
From HasValidate Figure 3.5 Shape of Transaction

after object assignment

63Assembling objects using mixin composition
It might seem that with the composition of mixins, we can obtain something similar to
multiple inheritance—a controversial software topic. If you’ve done some research on
this topic, you’ve come across the “diamond of death” problem. The problem refers
to the ambiguity present when a class extends multiple classes, each declaring the
same method. Languages with sophisticated support for this feature, such as Scala,
overcome the problem by using a technique known as linearization. In section 3.4.2,
we’ll see how JavaScript solves this problem.

3.4.2 Multiple inheritance and linearization

Generally speaking, mixins have two main benefits over traditional inheritance schemes:

 Mixins reduce some limitations of single inheritance by enabling a developer to
reuse sets of methods freely from several independent objects rather than one.

 The algorithm that Object.assign uses removes the ambiguity caused by multi-
ple inheritance and makes this process predictable.

The first point is a direct result of the prototype chain mechanism, as there’s a 1-1
correspondence between an object and its prototype. Concatenation overcomes this
limitation because you are free to mash together as many objects as needed into a
single one.

 The second point is more puzzling. How can mixins fix the infamous diamond
problem? The premise of the problem is easy to understand: a child class C extends
from two parent classes, B1 and B2, and each of these classes in turn extends from a
base class A. This problem is more common in class-oriented languages, which label
relationships to parent classes as IS-A. From that standpoint, how can a class be a
template for two different things? Consider the animal taxonomies example again
(figure 3.6). At the base, you may have a class Animal, with child classes Terrestrial-
Animal and AquaticAnimal.

 First, a little biology lesson: amphibians such as frogs, toads, and salamanders start
as larvae, with gills to breathe underwater, and later mature to adults with lungs to

Animal

breathe breathe

frog.breathe() ?

TerrestrialAnimal

Amphibian

AquaticAnimal

breathe

Figure 3.6 The classic diamond problem of multiple inheritance. Assuming
that a class may extend form multiple other classes with a conflicting method
signature, which method is dispatched at runtime?

64 CHAPTER 3 Linked, compositional object models
breathe air. Some amphibians even rely on their skins as a secondary respiratory alter-
native. It makes perfect sense for a class Amphibian to extend from both of these
classes. But when frog.breathe is called, which implementation will it pick? With soft-
ware, we can’t leave the answer to Mother Nature.

 As you might expect, we can use mixins to model this type of object:

const TerrestrialAnimal = {
 walk() {
 ...
 },
 breathe() {
 return 'Using my lungs to breathe';
 }
};

const AquaticAnimal = {
 swim() {
 ...
 },
 breathe() {
 return 'Using my gills to breathe';
 }
};

const Amphibian = name => Object.assign(
 {
 name
 },
 AquaticAnimal,
 TerrestrialAnimal
);

const frog = Amphibian('Frog');

frog.walk();

frog.swim();

To return to the original question, if frog calls
breathe, which implementation does it use?
Seemingly, we have entered a diamond situation.
But the rules of Object.assign remove this ambi-
guity because it’s predictable: always favor the
properties of the object that gets added last. You
can picture this situation by collapsing the dia-
mond of death to a straight line (hence, lineariz-
ing) in an orderly sequence. Linearizing the
diamond problem would look like figure 3.7.

breathe

frog.breathe()

breathe

breathe

Found

Overrides

Overrides

Overrides

Animal

TerrestrialAnimal

Amphibian

AquaticAnimal

Figure 3.7 Applying linearization to
a multiple inheritance situation

65Assembling objects using mixin composition
 The way in which Object.assign is implemented allows the same behavior to
occur. Behind the scenes, the implementation works like figure 3.8.

Now if you call breathe on the frog object, you always get the expected result, choos-
ing TerrestrialAnimal as the implementation:

frog.breathe(); // 'Using my lungs to breathe'

3.4.3 Composing objects using Object.assign and the spread operator

Merging objects this way is so common that since ECMAScript 2018, we can stream-
line this technique even more. Instead of using the Object.assign API directly, we
have language support to accomplish something similar, using the spread operator
over objects. This operator gives you a compact, idiomatic syntax to copy the state of
an object in an immutable way.

 In section 3.3, I briefly mention some examples in which Object.assign is useful.
The spread operator works equally well for each of those cases. Consider the example
of performing shallow clones of some object obj:

const clone = { ...obj };

This example is analogous to

const toad = Object.assign({}, obj);

We can use the spread operator to create object templates:

const toad = { ...frog, name: 'Toad' };

In a single line, we copied all owned properties from frog and overrode the name
property to yield a new object called toad. From a practical point of view, Object
.assign and the spread operator have similar uses, the exception being that the
spread operator yields a new object instead of assigning to an existing object. In most
cases, this exception doesn’t matter, but if we were to use the spread operator with the
Transaction class where we opted to augment prototype directly, the code would fail
with an error. So

= Object.assign(TerrestrialAnimalAmphibian Animal AquaticAnimal

[[Set]] [[Set]]

, ,)

Figure 3.8 Multiple inheritance is possible with Object.assign’s mechanism that takes
care of establishing a predictable order in which source objects are assigned to the target.

66 CHAPTER 3 Linked, compositional object models
Transaction.prototype = {
 ...HasHash(['timestamp', 'sender', 'recipient', 'funds']),
 ...HasSignature(['sender', 'recipient', 'funds']),
 ...HasValidation()
}

would throw an error in strict mode:

TypeError: Cannot assign to read only property 'prototype' of function 'class
Transaction...

Although both patterns allow you to create objects by combining others, that subtle
difference is enough for us to continue using Object.assign in our application. In
section 3.5, we use this pattern to complete the main classes of our domain model.

3.5 Applying shared mixins to multiple objects
Now that you have a good understanding of dynamic object concatenation, to see the
benefits of code reuse, we’ll apply it to other parts of our application. In this section,
you’ll see how the mixins we’ve created so far apply to more than Transaction. To
keep things a bit consistent in the domain layer, and because you’re more likely to run
into classes in the wild, I’ll use classes to model the concepts of Blockchain, Block,
and Wallet. In listing 3.12, I showed how to use mixins with OLOO. Both patterns
use implicit linking, so you should be able to port this code to OLOO style without
much effort.

 First, let’s define the Blockchain class in the next listing with a similar structure.

class Blockchain {

 #blocks = new Map();

 constructor(genesis = createGenesisBlock()) {
 this.#blocks.set(genesis.hash, genesis);
 }

 height() {
 return this.#blocks.size;
 }

 lookup(hash) {
 const h = hash;
 if (this.#blocks.has(h)) {
 return this.#blocks.get(h);
 }
 throw new Error(`Block with hash ${h} not found!`);
 }

 push(newBlock) {
 this.#blocks.set(newBlock.hash, newBlock);

Listing 3.17 Blockchain definition with mixins

67Applying shared mixins to multiple objects
 return newBlock;
 }
}

function createGenesisBlock(previousHash = '0'.repeat(64)) {
 //...
}

Object.assign(Blockchain.prototype, HasValidation());

A blockchain stores blocks, which in turn store transactions. Listing 3.17 shows a basic
class declaration of Block, which we’ll fill in as we go along. The most important job of
this class is to manage a collection of transactions and the hashing calculation by using
its previous hash. What makes tampering detectable in a blockchain is that every block’s
hash depends on the hashes of all the previous blocks, starting with the genesis. So if a
block is tampered with, all you need to do is recompute its hash and compare it with the
original to detect the malfeasance. The next listing shows how Block also mixes HasHash.

class Block {
 #blockchain;

 constructor(index, previousHash, data = []) {
 this.index = index;
 this.data = data;
 this.previousHash = previousHash;
 this.timestamp = Date.now();
 this.hash = this.calculateHash();
 }

 set blockchain(b) {
 this.#blockchain = b;
 return this;
 }

 isGenesis() {
 return this.previousHash === '0'.repeat(64);
 }
}

Object.assign(
 Block.prototype,
 HasHash(['index', 'timestamp', 'previousHash', 'data']),
 HasValidation()
);

As of now, we’ve built the skeleton of most of the domain layer of our application. As
you read on, you will learn more about JavaScript and programming a blockchain as
we continue to add the finer details to this code. For additional reference, figure 3.9
shows the objects and the shared mixins we’ve created so far.

Listing 3.18 Block definition

As with Transaction,
extends blockchain
with validation
functionality. (Full
implementation of
validation logic is
covered in chapter 5.)

A block’s data field can contain a
collection of pending transactions
found in the blockchain at the
moment a new block is mined or
mined transactions found after the
block is mined into the chain.

Every block always
contains the hash of the
block that preceded it (which
establishes the chain).

HasHash augments
Block with hashing
functionality.

68 CHAPTER 3 Linked, compositional object models
Furthermore, to make teaching blockchain simpler, I tried to avoid some of the cryp-
tography topics by using email addresses to identify a transaction’s sender and recipi-
ent. In the real world, emails are way too personal for a public ledger, in which user
information always needs to be secure. A transaction stores sender and receiver
addresses in the form of cryptographically secure public keys. When you visit the
blockchain application’s source code in GitHub, you’ll see keys being used instead of
emails. This information identifies each user’s digital Wallet, as shown in the follow-
ing listing. Think of a Wallet as being your personal banking mobile app.

class Wallet {
 constructor(publicKey, privateKey) {
 this.publicKey = publicKey
 this.privateKey = privateKey
 }
 get address() {
 return this.publicKey
 }
 balance(ledger) {
 //...
 }
}

Figure 3.10 shows the basic interactions among blocks, transactions, wallets, and
blockchain.

 In this chapter, we explored two more object construction patterns: OLOO (also
known as simple object linking) and concatenative object extension (also known as

Listing 3.19 Wallet object

Block

Blockchain

Transaction

HasHashHasSignature

HasValidation

ClassClass

Class

MixinMixin

Mixin

Figure 3.9 The main objects at play, with their respective mixins. As you
can see, mixins are designed to be shared structures.

Details deferred
to chapter 4

69Applying shared mixins to multiple objects
mixins). Parting from the techniques you reviewed in chapter 2, these alternatives
give you more flexibility in modeling your objects.

 There’s always a downside, however. JavaScript engines highly optimize processes
that take advantage of the [[Prototype]] mechanism. When deviating a bit by using
mixins instead of object hierarchies, which prefer more state copying and are more
resilient to fragile base objects or prototype pollution, we create a slightly bigger com-
bined memory footprint because we have a lot more objects in memory. We mitigated
this situation by extending a class’s prototype instead of mixin into new instances
directly, as the next listing shows.

Object.assign(
 new Transaction(...),
 HasHash(['timestamp', 'sender', 'recipient', 'funds']),
 HasSignature(['sender', 'recipient', 'funds']),
 HasValidation()
)

With this code, you would have to repeat this complex construction call every time
you need a new transaction. In most or all of your cases, having to copy state is negligi-
ble, considering that most performance bottlenecks in applications occur with I/O
bound calls (database, network, file system, and others). Nevertheless, it’s important
to pay attention to this situation in those rare cases in which you’d need hundreds of
these objects.

 Another issue to pay attention to is the implicit assumption that a mixin makes about
the target object in which it’s embedded. You might have seen this assumption when we
discussed the code inside HasHash in section 3.5. The next listing shows that code again.

const HasHash = keys => ({
 calculateHash() {
 const data = keys.map(f => this[f]).join('');

Listing 3.20 Assigning mixins to a single instance of Transaction

Listing 3.21 HasHash mixin

Block

Blockchain

1

1

1..*

1..*

Transaction

Wallet

Wallet

Sender

Recipient

Money

Funds

Figure 3.10 The main objects at play in our simple blockchain application. I have
not shown Money, a value object that describes an amount and currency.

Creates a new object each time
with a copy of all methods

Creates an implicit
dependency between the
mixin and the whole object

70 CHAPTER 3 Linked, compositional object models
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
 }
});

As you can see, this is the glue between the whole object and its mixins. Mixins bind
really tightly to the public interface of its target object and can become fragile when
target objects are further extended and mixin code starts to change. Also, from an
optics perspective, it’s hard to see the shape of the objects being coupled here. You’d
have to navigate to all objects that mix this behavior to understand whether the code
will work for all of them.

 There’s no hard-and-fast rule about whether to use linking-based models versus
inheritance-based models. As with all software, the answer depends on the types of
problems you’re solving, the team’s expertise, and how complex your domain model
is. Unlike other languages, however, JavaScript gives you options.

 Now that we’ve examined JavaScript’s object model in great depth, it’s time to start
talking about functions. One interesting fact about JavaScript is that functions are also
objects in the language (aka first-class functions). In chapter 4, you’ll learn how to exploit
the benefits of first-class functions and see how they enable functional programming.

Summary
 JavaScript offers behavior delegation via implicit links and mixins for building

objects in a compositional manner.
 Behavior delegation is the natural way to model objects in JavaScript. It uses the

implicit delegation mechanism present in JavaScript’s lookup process and the
prototype chain.

 Object concatenation offers a simple approach based on structural object com-
position, which allows you to build objects by attaching (embedding) behavior
from other independent objects.

 You can use mixins to extend objects (or classes) dynamically and favor struc-
tural composition over inheritance.

 Mixins address the issue of multiple inheritance through a mechanism known
as mixin linearization.

 JavaScript offers a shortcut for Object.assign by using the spread operator,
although Object.assign and the spread operator are not interchangeable.

Part 2

Functions

Part 2 takes the objects defined in the first part and brings them to life. Func-
tions kick the gears into motion on any JavaScript application. Unfortunately,
most JavaScript developers don’t take full advantage of the power of JavaScript
functions. By taking advantage of the fact that functions are also objects in the
system, you’ll begin to appreciate the joy of JavaScript. Part 2 also introduces
new syntax that will change how you structure your JavaScript code: the pipeline
and bind operators.

 Chapter 4 starts by teaching you how to use JavaScript in a functional man-
ner. You’ll learn to decompose problems into small tasks, each represented by a
function, and to compose them back together. To enable this capability, higher-
order functions allow you to pass, return, and dynamically call functions. You’ll
learn how to use partially applied (curried) functions to prebake or configure
the functions you’ll assemble into compositional chains. Also in store in chap-
ter 4 is a preview of JavaScript’s proposed pipeline operator, which will bring the
power of functional languages like Elixir and F# to JavaScript.

 I’ve said that functions are objects, but chapter 5 reverses this definition,
teaching you to think of objects as behaving like functions. Here, you’ll learn
about a pattern that’s becoming pervasive on many language platforms: Alge-
braic Data Type (ADT). An ADT is an object with simple, specialized behavior.
You can use ADTs to represent common tasks (data validation, error handling,
null checks, and so on) in a compositional, fluent way. You’ll be able to execute
objects as easily as you call functions—a concept called a functor. In fact, you’ve
been using functors all along without realizing it. Arrays and promises (dis-
cussed in part 4) are perhaps the most commonly used functors in JavaScript,

and you’ll learn which part of their respective APIs makes them behave like functors
and even monads. What’s cool is that you’ll be able to extract this API and apply Java-
Script’s proposed bind operator syntax to any type of object.

Writing composable,
pure code
If you want to see which features will be in mainstream programming languages
tomorrow, then take a look at functional programming languages today

—Simon Peyton Jones

If objects are the fabric of JavaScript, functions represent the needles used to
thread the pieces together. We can use functions in JavaScript to describe collec-
tions of objects (classes, constructor functions, and so on) and also to implement
the business logic, the machinery that advances the state of our application. The

This chapter covers
 Refactoring imperative coding to a declarative,

functional style

 Mastering JavaScript’s higher-order functions

 Introducing pure functions and immutability

 Combining pure logic with curry and composition

 Improving readability and structure of code with
a point-free style

 Creating native function chains with the pipeline
operator
73

74 CHAPTER 4 Writing composable, pure code
reason why functions are so ubiquitous, versatile, and powerful in JavaScript is that
they are objects too:

Function.prototype.__proto__.constructor === Object;

JavaScript has higher-order or first-class functions, which means you can pass them
around as arguments to another function or as a return value. With higher-order func-
tions, you can dramatically simplify complex patterns of software to a handful of
functions, making JavaScript a lot more succinct than other mainstream languages
such as Java and C#.

 In chapter 3, we looked at how objects compose their structure to some extent
using OLOO and more fully using mixins. Higher-order functions compose too—not
structurally, but behaviorally, by being chained together and passed around as call-
backs to represent sequences of computational logic. Higher-order functions are
JavaScript’s most powerful features by far, and the best way to learn about them is
through the functional programming (FP) paradigm.

 FP is a force to be reckoned with. These days, it’s almost impossible to read about the
wonders of JavaScript without seeing a shout-out to FP. I think JavaScript has continued
to flourish thanks to its FP support, which is one of the things that drew me toward
JavaScript many years ago. Although, theoretically, FP is an old school of thought, it’s
become pervasive recently in JavaScript coding and application design. Good examples
are libraries such as Underscore and Lodash for processing data, React and Hooks for
building modern UIs, and Redux and RxJS for managing state. In fact, if you look at
2019’s State of JavaScript results for most-used utility libraries (https://2019.stateofjs
.com/other-tools/#utilities), you will find Lodash, Underscore, RxJS, and Ramda rank-
ing at the top. All these libraries enhance the functional capabilities of JavaScript.

 Fundamentally speaking, FP promotes a different approach to problem solving
from the more common structured or imperative way to which we’re all accustomed.
Wrapping your head around FP requires a mastery of JavaScript’s main unit of compu-
tation, which has always been functions. Any type of object definition tries to associate
the data (instance fields) with the logic (methods) that process that data. Objects
compose at a coarse-grained level, as you learned about in chapter 3. Functions, on
the other hand, separate data (arguments) and logic (function body) more distinctly
and compose at a more fine-grained, lower level. FP programs are made up of a set of
functions that receive input and produce a result with this data.

 In this chapter, we’ll take two important parts of our blockchain application and
improve them by using FP. The goal is not a complete redesign of the application.
Rather, we’ll keep things simple and take a more lenient approach that combines the
benefits of OO and FP paradigms together—aka a hybrid model. You’ll learn that
although imperative and FP disagree on fundamental principles, you can benefit from
their strengths when tackling different parts of your application. To help you transi-
tion to an FP way of coding, we’ll visualize how an imperative program is converted to
a functional one (section 4.2).

https://2019.stateofjs.com/other-tools/#utilities
https://2019.stateofjs.com/other-tools/#utilities
https://2019.stateofjs.com/other-tools/#utilities

75What is functional programming?
 Unless you’re an expert, I recommend that you start by slowly adopting the basics
of FP covered in this chapter and then finding ways to embed FP in your application.
Later, how far you want to take this paradigm in your own code is up to you. Core busi-
ness logic is usually a good candidate for this way of thinking. We’ll go through the
exercise of refactoring some imperative code into functional so that you can get a
sense of how these two kinds compare.

 It’s been a noticeable trend for a few years now that platform teams, including
JavaScript, are adding more features to their programming languages to support a
functional style. ECMAScript 2019 (aka ES10), for example, added Array.prototype
.{flat,and flatMap}, which are integral to using data structures in a functional way.
As of this writing, the road map for TC39 features a set of functional-inspired propos-
als moving up the ranks that will affect how you write JavaScript code in the years to
come. So learning about this paradigm now will prepare you for what’s ahead. In this
book, we’ll be looking at the

 Pipeline operator (https://github.com/tc39/proposal-pipeline-operator)
 Bind operator (https://github.com/tc39/proposal-bind-operator)

We still have a way to go before we understand why these features are so important.
Understanding these features begins with understanding functional programming.

4.1 What is functional programming?
In this section, I’ll provide a suitable definition of FP. First, I’ll show you a short exam-
ple and go over some of the basic qualities of functional code. Many people relate FP
to the array APIs map, reduce, and filter. You’ve probably seen these APIs in action
many times. Let’s start with a quick example to jog your memory: determine whether
all block objects in an array are valid. For this example, you can assume that you can
skip validating the genesis block and that all blocks have an isValid method. Imple-
menting this logic by using the array APIs would look like the next listing.

const arr = [b1, b2, b3];

arr
 .filter(b => !b.isGenesis())
 .map(b => b.isValid())
 .reduce((a, b) => a && b, true);

As you know, these array APIs were designed to be higher-order functions, which
means that they either accept a callback function or return one and delegate most of
the logic to the callback function you provide. You’ve probably written similar code
before but never thought about it from an FP point of view. An FP-aware programmer
always prefers writing code that is heavily driven by higher-order functions this way.

Listing 4.1 Combining map, filter, and reduce

Skips the genesis block
(which is always assumed
to be valid)

Converts the array of
blocks to an array of
Boolean values by calling
isValid on each block

Performs a logical AND of all the Boolean values
together, parting from true, to obtain the final result

https://github.com/tc39/proposal-pipeline-operator
https://github.com/tc39/proposal-bind-operator

76 CHAPTER 4 Writing composable, pure code
 Aside from the tendency to use functions for almost anything, another important
quality of FP programs is immutability. In listing 4.1, even though arr is being
mapped over and filtered, the original arr reference is kept intact:

console.log(arr); // [b1, b2, b3]

Code that is immutable avoids bugs that arise from inadvertently changing your appli-
cation’s state, especially when you deal with asynchronous functions that can run at
arbitrary points in time. Did you know that methods such as reverse and sort mutate
the array in place? What would happen if you passed that original array object to some
other part of your program? Now the result is unpredictable.

 An immutable function that always returns a predictable result, given a set of argu-
ments, is known as pure, and with that definition, we arrive at the definition of FP:

Functional programming is the art of composing higher-order functions to advance the
state of a program in a pure manner.

So far, I’ve talked a little about composition and pure code. FP takes these ideas to the
practical extreme. Now I’ll unpack the key parts of the definition of FP:

 As you know by now, a higher-order function is one that can receive a function as a
parameter or produce another function as a return value. With FP, you use
functions for pretty much anything you do, and your program becomes one big
assembly of functions glued together by composition.

 Pure functions compute their results based entirely on the set of input arguments
received. They don’t cause side effects—that is, they don’t rely on accessing any
outside or globally shared state, which makes programs more predictable and
simple to reason about because you don’t have to keep track of unintended
state changes.

FP developers use functions to represent any type of data.

4.1.1 Functions as data

You can use functions to represent data in the form of expressions. Expressions can be
evaluated to produce a value right away or passed to other parts of your code as call-
backs to be evaluated when needed. Here are a few examples:

 Declare a constant value:

const fortyTwo = () => 42;

As with regular constants, you can assign an expression to a variable or pass it as
a function argument.

 Echo the same value, also known as the identity function:

const identity = a => a;

77What is functional programming?
 Create new objects or implement arbitrary business logic:

const BitcoinService = ledger => { ... };

This function is known as a factory function, which always produces a new object.

 Encapsulated, private data (closure):

const add => a => b => a + b;

a is stored as part of the outer function’s closure and referenced later in the
internal function when the entire expression is evaluated:

add(2)(3) === 5

NOTE The arrow function notation used here is syntactically convenient to
embed in fluent method chains, such as when you code with map, filter,
reduce, and others or when you need an one-line expression. Although this
chapter uses this notation often because of its terse design, regular function
syntax is equally appropriate for all these examples.

All these expressions (except the first one) receive input and return output. The
return value of a pure function is always a factor of the input it receives (unless it’s
always a constant); otherwise, the implication is that you’ve somehow opened the
door to side effects and impure code.

 Listing 4.2 shows a simple, naïve example that illustrates combining some of these
expressions, which contain computation or data, as higher-order functions. The code
attempts to perform some mathematical operation only if conditions allow; otherwise,
it returns a default value.

const notNull = a => a !== null;
const square = a => a ** 2;

const safeOperation = (operation, guard, recover) =>
 input => guard(input, operation) || recover();

const onlyIf = validator => (input, operation) =>
 validator(input) ? operation(input) : NaN;

const orElse = identity;

const safeSquare = safeOperation(
 square,
 onlyIf(notNull),
 orElse(fortyTwo)
);

safeSquare(2); // 4
safeSquare(null); // 42

Listing 4.2 Combining higher-order functions

Checks whether a
value is not null Executes a safe

operation; otherwise,
calls a recovery function

Runs operation only if the
validator function returns
true; otherwise, returns NaN

Uses the identity function as
recovery, aliased under the
name orElse

Computes the square of a number
if the input is not null; otherwise,
recovers with the value 42

78 CHAPTER 4 Writing composable, pure code
If you look at the structure of safeSquare, notice that it’s made up of functions that
clearly communicate the intent of the program. Some of these functions carry only
data (orElse); other functions carry out a computation (square); some functions do
both (onlyIf). This listing gives you a good first look at code done the functional way.

4.1.2 The functional way

As the saying goes, less is more. The functional paradigm imposes restrictions that are
meant not to diminish what you can do, but to empower you. In this section, you’ll
look at a set of guidelines that help you code the functional way. In section 4.3.2,
you’ll learn how to work with these guidelines to tackle any type of problem.

 An FP programmer always codes with a certain set of rules in mind. These rules
can take some getting used to but become second nature with practice. Learning
them will be well worth your time, however, because you’ll end up with code that is
more predictable and simpler to maintain.

 The functional way in JavaScript involves these four simple rules:

 Functions must always return a value and (with a few exceptions) declare at
least one parameter.

 The observable state of an application before and after a function runs does not
change; it’s immutable and side-effect-free. A new state is created each time.

 Everything a function needs to carry its work must be passed in via arguments
or inherited from its surrounding outer function (closure), provided that the
outer function abides by the same rules.

 A function called with the same input must always produce the same output.
This rule leads to a principle known as referential transparency, which states
that an expression and its corresponding value are interchangeable without
altering the code’s behavior.

With these simple rules, we can remove side effects and mutations from your code,
which are one of the leading causes of bugs. When a function obeys all these rules, it is
said to be pure. Sound simple enough? To rephrase, FP is the art of combining func-
tions that play by these rules to advance the state of a program to its final outcome.

 According to these rules, how is something like printing to the console pure? It’s
not. Functions that reach out of their scope, to perform I/O in this case, are effectful—
that is, they cause a side effect. Side effects can also include functions that read/write to
variables outside their own scope, accesses the filesystem, writes to a network socket,
relies on random methods such as Math.random, and so on. Anything that makes the
outcome of a function unpredictable is considered bad practice in the FP world.

 But how can anything useful come out of functional coding when we can’t touch
all the things that mutate the state of our program? Indeed, working with immutable
code requires a different mindset and, in some cases, a different approach to a
problem, which is the hardest part. With FP, objects shouldn’t be manipulated and
changed directly. A change to an object means that a new one is always created, similar

79Functional versus imperative at a glance
to version control, in that every change, even in the same line, results in a new commit
ID. With respect to reading files, printing to the console, or any other practical real-
world task, we need to learn to deal with these cases in a practical way.

 So far, we’ve been talking about FP at a high level. To make this discussion more
concrete, section 4.2 compares functional and imperative code.

4.2 Functional versus imperative at a glance
So that you can begin to wrap your head around this paradigm shift, it’s best to tackle a
couple of problems. We’ll quickly go over the techniques needed to implement this shift
throughout the chapter so that you get an end-to-end view of using FP in JavaScript.

 The first problem we’re tackling in this chapter is a functional way to implement the
logic behind calculating hashes. Here, we will swap the insecure algorithm for a secure
implementation of the HasHash mixin logic. This implementation will be a good warmup
for our second example, which involves calculating the balance of a user’s digital wallet
by using only pure functions. In the latter exercise, we will see a complete refactoring of
imperative code into functional. The balance calculation involves processing all the
blocks from the public ledger and tallying all the transactions that refer to a specific user.
If the user appears as the recipient, we add funds; otherwise, we subtract funds.

 To give you a frame for comparison, the imperative version of our second problem
looks something like the following:

function computeBalance(address) {
 let balance = Money.zero();
 for (const block of ledger) {
 if (!block.isGenesis()) {
 for (const tx of block.data) {
 if (tx.sender === address) {
 balance = balance.minus(tx.funds);
 }
 else {
 balance = balance.plus(tx.funds);
 }
 }
 }
 }
 return balance.round();
}

You’ll learn how to transition this version into a more functional style, like so:

const computeBalance = address =>
 compose(
 Money.round,
 reduce(Money.sum, Money.zero()),
 map(balanceOf(address)),
 flatMap(prop('data')),
 filter(
 compose(
 not,

80 CHAPTER 4 Writing composable, pure code
 prop('isGenesis')
)
),
 Array.from
);

You’re probably wondering whether these two programs are the same: the first version
has loops and conditionals, and the second one doesn’t. Shockingly, the programs are
the same. You probably recognize some of the constructs in this code block, such as
map and filter, but how this code works may not be clear, especially because the con-
trol and data flow is in the opposite direction of its imperative counterpart. The
rounding instruction appears at the top rather than at the end, for example.

 Looking at the FP style again, you may also wonder where the tallying of the total is
taking place. Compare figures 4.1 and 4.2 to see the different control and data flows
of the imperative and functional approaches.

The imperative approach (figure 4.1) describes not only the changes in state, but also
how this change is produced as data flowing through all the control structures (loops,
conditionals, variable assignment, and so on). The functional approach (figure 4.2),
on the other hand, models a unidirectional flow of state transformations that hides
the intricate control details; it shows you the steps needed to obtain the final result

No

Start

Stop

Balance = 0

Next block in

ledger

Is genesis?
Yes Next pending tx

in block

No
Address matches

sender?

Yes
Add funds to

balance

Subtract funds

from balance

Done

Round balance

Figure 4.1 Imperative flow of control for the logic in calculating a user’s total balance in a blockchain

81Composition: The functional way
without all the unnecessary cruft. Also,
each step is immutable, as mentioned
earlier, which allows you to laser-focus on
any of them without having to worry
about the rest (figure 4.2).

 Figure 4.2 is modeling a declarative
flow. Think of this figure as being like
summarizing the highlights of the imper-
ative version in the form of a recipe.
Declarative code is written to match how
it will be read. Write code for your users
and colleagues, not for the machine,
that’s what compilers are for.

 A good example of a declarative
language is SQL. In SQL, the beauty of
declarative programming is that it focuses
on what you’re trying to accomplish
rather than how, so mundane details
such as code splitting, looping, and state
management are tucked inside their
respective steps. The hardest part about
embracing FP is letting go of your old
ways and your imperative bias. After you
cross this line, you start to see how the
structure, readability, and maintainabil-
ity of your code improve, especially in JavaScript, which gives you the freedom to
mutate data in many ways. We’re fortunate that JavaScript allows us to write code this
way, and we should take advantage of it.

 To embrace the FP mindset, you must understand function composition, dis-
cussed in the next section.

4.3 Composition: The functional way
Generally speaking, composition occurs when data combines to make like-data or
data of the same type; it preserves type. Objects fuse into new objects (like the mixins
from chapter 3), and functions combine to create new functions (like the functions in
this chapter). When mixins create new objects, this process is known as coarse-
grained, structural composition. This section teaches you how to assemble code at the
function level, known as fine-grained or low-level composition.

 Function composition is the backbone of functional programming, and it’s the
guiding principle by which you arrange and assemble your entire code. Although
JavaScript doesn’t enforce any restrictions, composition is most effective when your
functions play by the rules of purity mentioned in section 4.1.2.

Stop

Array

of blocks

Remove the

genesis block.

Fold array of

blocks into array of

pending tx

Convert tx to a

+/– amount

based on recipient

Sum all monies

Round balance

Start

Figure 4.2 Functional
flow of control for the logic
in calculating a user’s total
balance in a blockchain

82 CHAPTER 4 Writing composable, pure code
 In this section, we’ll implement the business logic of the HasHash mixin. First,
you’ll learn how to convert the imperative calculateHash method we started in
chapter 2 to use a more functional style. We’ll use this method to fill in the skeleton
implementation we started in chapter 3. Second, you’ll learn how composition
can help you work around code that has side effects. This capability is important
because most of the time, you will need to mix pure code with effectful code in your
daily activities.

 The best way to understand how functions compose is to start small, with only two
functions, because then that same logic can be extended to an arbitrary number of
them. So given the functions f and g, you can order them in a such a way that the out-
put of the first becomes the input of the second, like binary plumbing, as shown in fig-
ure 4.3.

In code, composition can be represented concisely by f(g(args)). Because JavaScript
executes eagerly, it will try to evaluate any variable with a set of parentheses in front of
it immediately. If you want to express the composition of two functions and assign it to
a variable name, you can wrap a function around that expression. Let’s call this
expression compose (see the next listing).

const compose = (...args) => f(g(...args));

Listing 4.3 assumes, however, that f and g are functions that exist outside the context
of compose. We know that this situation is a side effect. Instead, make f and g input
arguments, and use the closure around the inner function so that this code works with
any two functions that you provide. Closures are important features that work amaz-
ingly well with higher-order functions; I’ll review them in section 4.4.

 Let’s wrap this expression yet again with another function around compose and call
it compose2:

const compose2 = (f, g) => (...args) => f(g(...args))

This code is a lot more flexible. Because compose2 accepts functions as arguments and
returns a function, it’s of higher-order, of course. Also, notice that compose2 evaluates

Listing 4.3 Composition of two functions

f g argsOutputOutput

Figure 4.3 High-level diagram of composition. The directions of the
arrows are important. Composition works right to left. So in f composed
with g, g receives the initial input arguments. Then g’s output is input
to f. Finally, f’s result becomes the output of the entire operation.

Using JavaScript’s spread operator
to support an arbitrary number of
arguments

83Composition: The functional way
the functions right to left (f after g) to align with the mathematical definition of func-
tion composition. Here’s a more-concrete example:

const count = arr => arr.length;
const split = str => str.split(/\s+/);

You could combine these functions directly:

const countWords = str => count(split(str));

When you use compose2, the same expression becomes

const countWords = str => compose2(count, split)(str);

Here’s a little pro tip. Because you can assign functions directly to a variable, any time
you have the input argument repeated to the left and the right of an expression, you
can cancel it and make your code more compact:

const countWords = compose2(count, split);

countWords('functional programming'); // 2

Figure 4.4 shows the flow from figure 4.3.

compose2 is superior to a direct call because it’s able to separate the declaration of
functions involved in the sequence from its evaluation. The concept is similar to
OLOO, which allows you to instantiate a ready-to-use set of objects and initialize those
objects when you need to. By capturing the functions passed in as variables (f and g),
we can defer any execution until the caller supplies the input parameter. This process
is called lazy evaluation. In other words, the expression

compose2(count, split);

is itself a function made from two other functions (like an object made from two mix-
ins). Yet this function will not run until the caller evaluates it; it sits there dormant.
compose2 allows you to create a complex, ready-to-use expression from a couple of
simple ones and assign it a name (countWords) to use in other parts of the code, if
needed. Let’s embellish this example a bit more in the next section; we’ll tackle some-
thing a bit more realistic that works in a side effect in the mix.

count split 'functional programming'2

Figure 4.4 Sequentially executed count after split

84 CHAPTER 4 Writing composable, pure code
4.3.1 Working with side effects

Exception handling, logging to a file, and making HTTP requests are some of the
tasks we work on every day. All these tasks involve side effects in one way or another,
and there’s no avoiding them. The way to deal with side effects in a functional-style
application is to isolate and push them away from our main application logic. This
way, we can keep the important business logic of our application pure and immutable,
and then use composition to bring all the pieces back together.

 To see how you can split pure from non-pure code, let’s tackle another task: count-
ing the words in a text file. Assume that the file contains the words “the quick brown
fox jumps over the lazy dog.” For simplicity, let’s use the synchronous version of the
filesystem API built into Node.js, as shown in the next listing.

function countWordsInFile(file) {
 const fileBuffer = fs.readFileSync(file);
 const wordsString = fileBuffer.toString();
 const wordsInArray = wordsString.split(/\s+/);
 return wordsInArray.length;
}

countWordsInFile('sample.txt'); // 9

Listing 4.4 is trivial but packs in a few steps. As in calculateHash, you can identify
four clear tasks: reading the raw file, decoding the raw binary as a string, splitting the
string into words, and counting the words. Arranging these tasks with compose should
look like figure 4.5.

First, represent each task as its own expression. You saw count and split earlier; the
next listing shows the other two tasks.

 const decode = buffer => buffer.toString();

 const read = fs.readFileSync;

In listing 4.5, we gave each variable a specific name to make the program easy to fol-
low. In imperative code, variable names are used to describe the output, if any, of exe-
cuting a statement or series of statements, but these variable names don’t describe the

Listing 4.4 Imperative function that counts the words in a text file

Listing 4.5 Helper functions to support countWordsInFile

readsplit decodecount filename=countWordsInFile

Figure 4.5 The logic of countWordsInFile derives from the logic of composing other single-
responsibility functions such as read, decode, split, and count.

Creating an alias to shorten
the filesystem API call

85Composition: The functional way
process of computing them. You have to parse through the code to see that process.
When you push for a more declarative style, the function names indicate what to do at
each step. Let’s work our way there. A direct call would look like

const countWordsInFile = file => count(split(decode(read(file))));

You can see that all variable assignment was removed. But we can agree that this
style of code can become unwieldy as complexity grows. Let’s use compose2 to fix
this problem:

const countWordsInFile = compose2(
 compose2(count, split),
 compose2(decode, read)
);

Each compose2 segment can be represented by its own micro module, as shown in fig-
ure 4.6.

But wait a minute—we already have a named abstraction that handles compose2(count,
split). That abstraction is called countWords. Let’s plug it in:

const countWordsInFile = compose2(
 countWords,
 compose2(decode, read)
);

The reason why you can swap portions of the code in and out like Lego bricks is refer-
ential transparency. In other words, the expression is pure and doesn’t rely on any
global, shared state. The outcome of either expression would be the same and, there-
fore, does not alter the result of the program. Plugging in this abstraction is better,
but we can do even better.

 For more complex logic, you’re probably thinking that grouping functions in pairs
is a lot of typing. To simplify the code, it would be ideal to have a version of compose2
that can work on any number of functions or an array of functions. Let’s repurpose
compose and use Array#reduce with compose2 to extend combining two functions to

count

split

=countWordsInFile

decode

read

filename

Figure 4.6 Diagram countWordsInFile improved with compose2

86 CHAPTER 4 Writing composable, pure code
any number of functions. This technique is analogous to putting together clusters of
Lego bricks at a time instead of assembling individual bricks.

 In Array#reduce, the reducer is the callback function that accumulates or folds
your data into a single value. If you’re not familiar with how reduce works, here’s a
simple example. Consider a function, sum, as a reducer for adding a list of numbers:

const sum = (a,b) => a + b;

[1,2,3,4,5,6].reduce(sum); // 21

The reducer takes the current accumulated result in a and adds it to the next ele-
ment, b, starting with the first element in the array.

 By the same token, compose2 is the reducer for compose:

const compose = (...fns) => fns.reduce(compose2);

In this case, the reducer takes two functions at a time and composes them (adds
them), creating another function. That function is remembered for the next iteration
and then composed with the next one and so on, resulting in a function that is the
composition of all functions provided by the user. Function composition works right
to left, with the rightmost function receiving the input parameter at the call site and
kicking off the entire process. In that order, reduce folds all the functions in the array
with the first function in the declaration as the last one to be executed, which matches
nicely with the definition of function composition.

 Now let’s use this technique in the next listing to peel those nested calls shown in
the preceding code snippets into a much more streamlined, unidirectional flow.

const countWordsInFile = compose(
 count,
 split,
 decode,
 read
);

countWordsInFile('sample.txt'); // 9

This code looks like pseudocode at first, doesn’t it? If you compare listings 4.4 and 4.6,
you can see that the latter is a basic outline of the former; it’s declarative! This style of
coding is also known as point-free, which we’ll discuss in section 4.6.

 The level of modularity used (fine-grained function level or coarse-grained mod-
ules with multiple functions) is up to you; you can compose to your heart’s content
(figure 4.7).

 Whether you’re composing simple functions or entire modules of code with a
function interface, the simplicity of assembling composable code doesn’t change.
(We’ll talk about importing and using modules in chapter 6.)

Listing 4.6 countWordsInFile implemented with compose

87Composition: The functional way
Now that you understand the composition pattern, let’s use it to decompose and sim-
plify the hashing logic of our blockchain application.

4.3.2 Decomposing complex code

In chapters 2 and 3, we began creating a hashing method for our transaction classes
called calculateHash. This hashing algorithm, or the digest string that it generated,
was insecure and prone to collisions. In the cryptocurrency world, this situation is a
no-go, so let’s improve it. You’ll see how a more functional design will enable you to
easily swap the insecure algorithm for a more secure one that uses Node.js’s crypto
module. Here’s the last version of that code again for reference:

const HasHash = keys => ({
 calculateHash() {
 const data = keys.map(f => this[f]).join('');
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
 }
});

Using the four rules outlined earlier in section 4.1.2, is this function/method pure?
Before answering this question, let’s practice a little reverse engineering. First, let’s
decompose the function into its main parts; then we’ll analyze each piece individually.
When we split the function apart, we’ll compose it back together by using a more
functional approach. With lots of practice, you’ll get better at this process, which will
become second nature.

 calculateHash performs two main tasks, split into two methods:

 Assembling the data from the set of keys:

function assemble(keys) {
 return keys.map(f => this[f]).join('');
}

module
A

module
B

module
N

<program> = Input...

...

Output

Figure 4.7 The structure of composable software. A program is implemented by composing other
subprograms, which can be as small as a function or as big as another program. Each module
(consider Module N) uses composition, finally arriving at assembling individual functions.

88 CHAPTER 4 Writing composable, pure code
 Computing the digest or cipher from this data:

function computeCipher(data) {
 let hash = 0, i = 0;
 while (i < data.length) {
 hash = ((hash << 5) - hash + data.charCodeAt(i++)) << 0;
 }
 return hash**2;
}

This thought process itself is beneficial because smaller functions are much simpler to
reason about than larger ones, and you can carry this thought process as deep as you
deem reasonable. Now to answer the question at hand: Are these two methods pure?
Believe it or not, computeCipher is pure from a practical standpoint, whereas assemble
is not. The reason is that assemble makes assumptions about its context when it
attempts to read properties from this—a potential downside of mixins that we high-
lighted in chapter 3. With a standalone function declaration, this is bound to the
function, not the surrounding object. To fix this problem, we can use JavaScript’s
dynamic binding:

const HasHash = keys => ({
 calculateHash() {
 return compose2(computeCipher, assemble.bind(this, keys))();
 }
});

The call to bind will correct the this reference and point it to the surrounding object
whose properties we want to read. This code is looking better, but relying on this type
of binding can make it hard to follow. Also remember that making assumptions about
the environment is a side effect, which we still have in calculateHash. To put it
another way, a function that infers state is harder to work with because its own behav-
ior is dependent on external factors. For that reason, you’ll never see references to
external variables, including this, used in a pure FP code base. On the other hand,
functions that are explicit about the data they need are self-documenting and, thus,
simpler to use and maintain.

 Let’s change assemble to a function that is explicit about its contract and
accepts the set of keys for the properties used in the hashing process, as well as the
object to hash:

function assemble(keys, obj) {
 return keys.map(f => obj[f]).join('');
}

By not making any assumptions, this generic, standalone function is completely
divorced from its surrounding class or object context. The fine line in the sand where
OO departs to FP in a hybrid model is where we disassociate or extract the code under
a class’s methods and move it into one or more pure functions. This separation or

89Composition: The functional way
segregation from the mutable, stateful components to immutable ones will help you
avoid making assumptions about your data and use FP where it makes sense.

 Let’s come back to computeCipher, the heart of the hashing process. Earlier, I
mentioned that in by-the-book functional programming, mutations are prohibited. In
practice, though, we accept making code easier to implement as long as state changes
don’t ripple out or leak from the function’s scope. In this case, all the mutations are
kept locally, so the code is acceptable as is.

 Nevertheless, computeCipher doesn’t capture the true functional spirit; it still feels
a bit procedural. By inspecting computeCipher as its own microenvironment, you can
see that its logic still depends on setting and changing variables like the loop counter
i and the accumulated hash. You have room for improvement. Working with lists and
arrays is simple with APIs such as map and reduce, but when you need to keep track of
and reuse state in an iterative manner, recursion is the best way to achieve your goal.
The next listing shows how you can refactor the while loop as a recursive function.

function computeCipher(data, i = 0, hash = 0) {
 if(i >= data.length) {
 return hash ** 2;
 }
 return computeCipher(
 data,
 i + 1,
 ((hash << 5) - hash + data.charCodeAt(i)) << 0
);
}

This function brings us back to our four main FP rules, without any trade-offs, and
here’s what we gained:

 We used JavaScript’s default argument syntax to capture the initial state properly.
 We eliminated all variable reassignment.
 We created expressions in which every branch produces a return value.

Now that we have these two smaller, simpler functions, we can compose them to com-
pute the cipher of a transaction object:

calculateHash() {
 return compose2(computeCipher, assemble(keys, this))();
}

But wait a second—we have a problem. compose2 expects a function but instead got a
string when assemble ran, so this code fails to run. Let’s use lazy evaluation to make a
small adjustment to assemble, turning it into a higher-order function that accepts the
keys and returns a function that is ready to receive the object of the call, taking advan-
tage of closures:

Listing 4.7 Refactoring computeCipher as a recursive function

Calls itself recursively with the updated hash at
each iteration as an input argument to avoid
assigning and changing data in place

90 CHAPTER 4 Writing composable, pure code
function assemble(keys) {
 return function(obj) {
 return keys.map(f => obj[f]).join('');
 }
}

This small adjustment is enough to get to our more functional approach:

const HasHash = keys => ({
 calculateHash() {
 return compose2(computeCipher, assemble(keys))(this);
 }
});

In essence, what we did to assemble was convert a 2-arity (two-argument) function to
two single-arity (single-argument) functions—the premise behind a technique called
curried function evaluation.

4.4 Currying and closures
Currying is a technique that will help you compose functions when they require multiple
arguments. It relies on JavaScript’s amazing support for closures. In this section, we’ll
begin with a quick review of closures and then move on to curried function application.

 You are probably familiar with closures, which are central to how JavaScript works.
In fact, they’re among the most compelling JavaScript features. To keep the discussion
focused, I won’t cover closures in depth but will provide some detail in case you’re not
familiar with them.

 A closure is another form of scope or context created around functions that allows a
function to reference surrounding variables. When a function is called, JavaScript
retains references to variables of a function’s local and global lexical environment—
that is, all variables syntactically declared around this function. In the specification,
the internal reference [[Scope]] links a function to its closure. In other books and
online resources, you may see the term backpack used to describe this linkage. The rea-
son I say around and not before is because hoisted variables and functions are also part
of a function’s closure. The following listing provides an example.

const global = 'global';
 function outer() {
 const outer = 'outer';
 function inner() {
 const inner = 'inner'
 console.log(inner, outer, global);
 }
 console.log(outer, global);
 inner();
 }
outer();

Listing 4.8 Basics of scope with closures

Prints inner
outer global

Prints outer
global

91Currying and closures
You can visualize this example in figure 4.8.
 JavaScript gives you complete freedom to access a sizeable subset of application

state from which a function is declared, implying the global scope as well as any outer
variables that lexically appear around a function. In essence, closures make all this
state implicit function arguments. Although access to these variables is certainly con-
venient at times, it can also lead to code that is hard to maintain. Theoretically, FP
considers accessing any state surrounding a function to be a side effect; after all, we’re
reaching outside. In practice, however, using closures is permissible so long as they are
bounded and narrow in scope and, more important, don’t incur any observable
changes beyond the surrounded function. Using closures is the way to code with Java-
Script, and we should take advantage of them. Closures enable some powerful pat-
terns in JavaScript, currying being one of them.

4.4.1 Curried function application

A function that has its argument list expanded as stepwise, single, nested functions of
single arguments is said to be curried. The next listing shows a simple example of
manual currying.

const add = x => y => x + y;

const addThreeTo = add(3);

addThreeTo(7); // 10

Instead of add receiving x and y arguments in one shot, the code accepts them as
singular functions that get called sequentially. More formally, currying is the process
of converting a function of multiple arguments (or arity N) to be evaluated it as N

Listing 4.9 Evaluating add as separate single-argument functions

Global

Outer
Global: access to all global variables

Outer: access to all globals, as well as
variables created in outer function scope

Inner: access to all globals, outer, and
variables created inside inner function

Inner

Figure 4.8 The closure mechanism in JavaScript allows any function to
reference its lexical environment. The innermost function has access to all
the state from its outer scopes (outer + global), and the outer scope can
access everything from its surrounding global scope.

Addition does not take place
until the last variable is bound.

Bind the expression, and
the function executes.

92 CHAPTER 4 Writing composable, pure code
unary (arity 1) functions. Until the entire list of arguments has been provided and
all functions evaluated, a curried function always returns the next function. If you
take a small step back, you can see that currying is another form of composition:
you’re taking a complex function and evaluating it as multiple simple ones. Because
add takes two arguments, x and y, it’s evaluated as two single-argument functions:

add(3)(7); // 10

Going back to our word-counting example, let’s use this manual currying technique
to buy more flexibility in decoding the binary buffer as a result of the file IO. As
decode stands right now, the toString method on buffers assumes a UTF-8 encoding:

const decode = buffer => buffer.toString();

Most of the time, this method is what you’ll want to use. But it’d be nice to have flexi-
bility in case we ever need ASCII encoding as well. Instead of refactoring decode to
accept another argument, let’s embed another function in between to capture the
encoding parameter (with its own default argument):

const decode = (encoding = 'utf8') => buffer => buffer.toString(encoding);

Now we can call decode once to partially curry/set the encoding parameter and plug
the resulting (remaining) function into the compose expression as such:

const countWordsInFile = compose(
 count,
 split,
 decode('utf8'),
 read
);

The declarative quality of this code is enhanced even further because you can see not
only the steps that make up your solution, but also the attributes or the configuration
of these functions in each step.

 Let’s continue working our way toward calculating secure object hashes in a func-
tional way. Consider a helper function called prop, again manually curried:

const prop = name => obj => obj[name] &&
 isFunction(obj[name]) ? obj[name].call(obj) : obj[name];

With the helper isFunction

const isFunction = f =>
 f
 && typeof f === 'function'
 && Object.prototype.toString.call(f) === '[object Function]';

93Currying and closures
prop can access a property from any object by name. You can partially bind the name
parameter to create a function with the name in its closure and then accept the object
from which to extract the named property. Consider this simple example:

const transaction = {
 sender: 'luis@tjoj.com',
 recipient: 'luke@tjoj.com',
 funds: 10.0
};

const getFunds = prop('funds');
getFunds(transaction); // 10.0

You can also create a function that extracts multiple properties into an array by map-
ping prop over an array of keys:

const props = (...names) => obj => names.map(n => prop(n)(obj));

const data = props('sender', 'recipient', 'funds');

data(transaction); // ['luis@tjoj.com', 'luke@tjoj.com', 10.0]

Calling prop on a single object is not as exciting as calling it on a collection of objects.
Given an array of three transaction objects with funds, 10.0, 12.5, and 20.0, respec-
tively, you can map prop over it:

[tx1, tx2, tx3].map(prop('funds')); // [10.0, 12.5, 20.0]

[tx1, tx2, tx3].map(prop('calculateHash'));

// [64284210552842720, 1340988549712360000, 64284226272528960]

In this code, the higher-order function prop('funds') did not produce a result
until map used it, which is convenient. But when functions get more complex, the
awkward notation used to write functions with expanded arrow syntax becomes hard
to read, not to mention that multifunction evaluation—add(x)(y)—is cumber-
some. You can automate the process of manually expanding into multiple functions
with the curry function.

 curry automates the manual currying process that we’ve been doing so far, con-
verting a function of multiple arguments to several nested functions of a single argu-
ment. Thus, a function like add

const add = a => b => a + b;

can be written as

const add = curry((a, b) => a + b);

94 CHAPTER 4 Writing composable, pure code
The wonderful quality of curry is that it dynamically changes the way the function
evaluates and smooths over the syntax needed to partially pass arguments. You can call
add piece-wise as add(3)(7) or, preferably, at the same time as add(3,7).

NOTE In theory, currying is a much stricter form of partial application that
requires that returned functions take a single parameter at a time. In partial
application, a returned function can take one or several arguments.

As with compose, you can import curry from any FP library (Ramda, underscore.js,
and so on), but studying the implementation is interesting; it uses a lot of modern
JavaScript idioms (such as rest and spread operators) to manipulate function objects.
It also uses a bit of reflection to dynamically figure out the function’s length (a topic
that I’ll circle back to in chapter 7).

 In keeping with the pure FP spirit of avoiding loops and reassignment of variables,
you can implement curry as a recursive, arrow function quite elegantly. You may also
find versions that take a more imperative, iterative approach:

const curry = fn => (...args1) =>
 args1.length === fn.length
 ? fn(...args1)
 : (...args2) => {
 const args = [...args1, ...args2]
 return args.length >= fn.length ? fn(...args) : curry(fn)(...args)
 };

The following listing shows how to use curry to enhance prop and props.

const prop = curry((name, obj) =>
 obj[name] && isFunction(obj[name]) ? obj[name].call(obj) : obj[name]
);

const props = curry((names, obj) => names.map(n => prop(n, obj)));

Listing 4.10 Curried versions of prop and props

Not everything can be curried, unfortunately
As wonderful and powerful as curry is, in JavaScript there are a few edge cases
where curry can change the expected behavior of a function when it relies on fea-
tures such as variadic parameters or parameters with default values.

In listing 4.11, to make props work with curry, we needed to change ...names to a
normal, nonvariadic parameter, names, that is allowed to appear as a first argument.
Variadic parameters always need to appear at the end of the function signature.

Internally, curry adds runtime support
to rewrite the (name, a) pair into partially
evaluated arguments name => a => ...

We no longer use the varargs …name
argument, as this is allowed only as

the last (or only) argument.

95Currying and closures
To reiterate, curry mandates that you satisfy all the arguments of a function before it
evaluates. Until that happens, curry keeps returning the partially applied functions
with the remaining arguments waiting to be passed in. This situation also prevents
running functions with unsatisfied or undefined arguments. As I said earlier, add(3)
returns a function to the caller, but add(3,7) evaluates to 10 immediately. There’s no
way to call a function with an unsatisfied set of arguments, which is great!

 With curried functions, the order of arguments is important. Normally, we don’t
pay a lot of attention to order in object-oriented code. But in FP, argument order is
crucial because it relies so much on partial application. In all the curried functions
shown in this chapter, notice that the arguments are arranged to benefit from partial
evaluation. For that reason, it’s best to place the most static, fixed arguments first and
allow the last ones to be the more dynamic call-specific arguments, as in the definition
for prop:

const prop = curry((name, obj) =>
 obj[name] && isFunction(obj[name]) ? obj[name].call(obj) : obj[name]
);

The last parameter, obj, is left unbounded (free) so that you can freely extract a par-
ticular field from any object as you’re mapping over an array, for example. Given the
transactions tx1 and tx2, one for $10 and the other for $12.50, respectively, you can
create a new function, fundsOf, with a partially bound funds property key. Now you
can apply this function to any object with that key or even map this function an array of
similar objects:

const fundsOf = prop('funds');
fundsOf(tx1); // 10.0
fundsOf(tx2); // 12.5

Now that you’ve learned about currying and composition, you can use them together
to create a functional version of the calculateHash logic inside HasHash. Alone,
curry and compose offer lots of value, but together, they are even more powerful.

Another, more subtle issue to watch out for is default parameters. Looking at the imple-
mentation of curry in this section, you can see that it relies on Function.length.
This property is a bit tricky in JavaScript because it does not count functions with
default values, as this snippet of code illustrates:

const add = (a, b) => a + b; // add.length = 2
const add = (a = 0, b = 0) => a + b; // add.length = 0

96 CHAPTER 4 Writing composable, pure code
4.4.2 The curry and composition dynamic duo

One of the goals of this chapter is to generate a more secure hashing digest for
calculateHash in our HasHash mixin. So far, we’re at this point in using the recursive
definition of computeCipher:

const HasHash = () => ({
 calculateHash() {
 return compose(computeCipher, assemble)(this);
 }
});

function computeCipher(data, i = 0, hash = 0) {
 if(i >= data.length) {
 return hash ** 2
 }
 return computeCipher(
 data,
 i + 1,
 ((hash << 5) - hash + data.charCodeAt(i)) << 0
);
}

const assemble = ({ sender, recipient, funds })
 => [sender, recipient, funds].join('');

HasHash is aware of its surrounding context (namely, the transaction object refer-
enced by this), but the functions are kept pure and side-effect-free. By building these
small islands of pure logic, we can put all this code aside and lessen the mental bur-
den of having to keep track of everything that’s happening.

 But we’re not done yet. Now that each function is separate, let’s improve the code
a bit more to make HasHash more secure and applicable to the other blockchain
domain objects. We will make two additional changes:

 Integrate HasHash with any object. This change involves refactoring assemble to
take an array of the parts of an object used in hashing, giving us extra flexibility
when assigning HasHash to other classes. Part of this change also involves map-
ping a call to JSON.stringify to ensure that any object provided (primitive or
otherwise) gets converted to its string representation. JSON.stringify is a
good way of ensuring that we get a string out of any type of data, and it works
well, provided that the objects are not incredibly long:

const assemble = (...pieces) => pieces.map(JSON.stringify).join('');

This line creates the string with the necessary object data to seed to the hashing
code. Here’s an example:

const keys = ['sender', 'recipient', 'funds'];
const transaction = {
 sender: 'luis@tjoj.com',
 recipient: 'luke@tjoj.com',

97Currying and closures
 funds: 10
};

assemble(keys.map(k => transaction[k]));

// ["luis@tjoj.com","luke@tjoj.com",10]

 Implement a more secure hash. Let’s use Node.js’s crypto module. This module
gives you the option to generate hashes using widely adopted algorithms, such
as SHA-2, as well as different output encodings, such as hexadecimal:

const computeCipher = (options, data) =>
 require('crypto')
 .createHash(options.algorithm)
 .update(data)
 .digest(options.encoding);

The next listing shows an example that creates the SHA-256 representation of a simple
object.

computeCipher(
 {
 algorithm: 'SHA256',
 encoding: 'hex'
 },
 JSON.stringify({
 sender: 'luis@tjoj.com',
 recipient: 'luke@tjoj.com',
 funds: 10
 })
); // '04a635cf3f19a6dcc30ca7b63b9a1a6a1c42a9820002788781abae9bec666902'

Hash computation must be reliable and predictable; given the same input, it must
produce the same output. If you recall from our starting guidelines, predictability
conveniently points to the principle of referential transparency. All that’s left to do
now is compose these two:

compose(computeCipher, assemble);

But there’s an issue here. Can you spot why this code won’t work? computeCipher is
not a function of a single argument. Invoking this function as is will pass the output of
assemble into the options part and undefined for data, which will break the entire
flow. We can use currying to address this mismatch by partially configuring compute-
Cipher to produce a function that gets inserted into compose. First, add curry to the
function definition:

const computeCipher = curry((options, data) =>
 require('crypto')
 .createHash(options.algorithm)

Listing 4.11 Computing a SHA-256 value from the contents of an object

SHA-2 is a set of secure cryptographic hash
functions. The longer the bit string, the more
secure it is. In this case, I’m using SHA0256,
which is widely adopted in the industry

Returns a hexadecimal-encoded string
instead of a binary buffer, making the
output more legible

98 CHAPTER 4 Writing composable, pure code
 .update(data)
 .digest(options.encoding));

Then call computeCipher piecewise, as you did with add and prop:

compose(
 computeCipher({
 algorithm: 'SHA256',
 encoding: 'hex'
 }),
 assemble);

The next listing puts everything together.

const HasHash = (
 keys,
 options = {
 algorithm: 'SHA256',
 encoding: 'hex'
 }
) => ({
 calculateHash() {
 return compose(
 computeCipher(options),
 assemble,
 props(keys)
)(this);
 }
});

Figure 4.9 shows the flow of data using a simple transaction object literal:

 const hashTransaction = Object.assign(
 {
 sender: 'luis@tjoj.com',
 recipient: 'luke@tjoj.com',
 funds: 10
 },
 HasHash(['sender', 'recipient', 'funds'])
);

 hashTransaction.calculateHash();

 // '04a635cf3f19a6dcc30ca7b63b9a1a6a1c42a9820002788781abae9bec666902'

We used curry and compose to drive the execution of calculateHash, which are
known as function combinators—functions that build up (combine) other functions.
Combinators have no special logic of their own; they work on either the structure of
the functions themselves or on coordinating their execution. curry manipulates the
arguments so that they can be evaluated one at a time. Similarly, compose is in charge

Listing 4.12 Final implementation of HasHash

Passing this works well when it’s your own code,
but when you’re using third-party libraries, it’s
best to send a copy of only the data needed.

99Currying and closures
of threading through a function’s output with the next function’s input. All this con-
trol flow is abstracted from you in this snippet of code:

compose(
 computeCipher(options),
 assemble,
 props(keys)
)(this);

The object referenced by this enters the composition chain, and on the other side, you
get its hash value. Passing the original context (this) here is safe because all these func-
tions are side-effect-free. But what happens when someone else changes them or when
you’re integrating with other functions you don’t know about? In JavaScript, object val-
ues are stored by reference. When you pass an object to a function, that reference is
passed by value, not the object itself (as with primitives). You can guard against any
undesirable mutations and make your code more predictable by sending a copy. This
situation is also a good opportunity for the input object being hashed to use only the
data you need. To do so, let’s use the Object.fromEntries API. This API allows you to
turn any iterable object of key/value pairs (Array, Map, and so on) into an object.
HasHash already has the list of keys for the data to hash, so it’s easy to construct an
object with only that data:

calculateHash() {
 const objToHash = Object.fromEntries(

computeCipher(options)*

assemble

{
sender: 'luis@joj.com',
recipient: 'luke@joj.com',
funds: 10

}

computeCipher(options, data)

props(keys)*

props(names, obj)

* = curried

=6428421055...

assemble(data)

Figure 4.9 Composing with curry in the implementation of calculateHash. The label above
each box shows the complete function signature. computeCipher and props are curried and
have been partially applied. The far-right parameter (or the only parameter) of all functions is used
to receive the input of one function in the chain.

100 CHAPTER 4 Writing composable, pure code
 keys.map(k => [k, prop(k, this)])
);
 return compose(
 computeCipher(options),
 assemble,
 props(keys)
)(objToHash);
 }

With this snippet, we’ve completed our HasHash mixin. As you can see, it’s not an
entirely pure object, because it depends on the global this to exist, which points to
the prototype of the object to which HasHash is assigned. But we can call it a hybrid
because it relies on pure functions to carry out its work.

 We still have to tackle the other coding example: calculating a user’s total balance
from blockchain transactions. In the code snippets you’ve seen so far, we’ve always
used a regular float to represent the funds amount. I did this to keep things simple. In
the real world, funds always has two components: a numerical value and a currency
denomination (such as $10.0 or ฿10.0). To represent currency, let’s create an object
called Money, designed to be immutable.

4.5 Working with immutable objects
The notion of purity extends beyond functions to objects. So far, the main entities of
our blockchain application (Block, Transaction, and so on) are mutable, which
means that you can easily change the properties of the object after instantiation. We
made this design decision to allow these objects to recalculate their hashes on update,
and also to allow the object to be dynamically extended via mixins or traditional
class-based inheritance if need be. We could also have decided to make the objects
immutable, and there are many good use cases for this design, one of which we’ll
explore in this section.

 Consider an object called Money that represents the amount of currency being trans-
acted. Money is an object with perpetual value: ten cents will always equate to ten cents.
Its identity is given by the amount and the currency name. If you change ten cents to
five cents, conceptually, that’s a new Money entity. Think about what it means to change
a date value. Isn’t this value a different moment in time? Changing a point in a Carte-
sian plane is another point. Other examples widely used in industry that lend them-
selves to this type of design include DateTime, Point, Line, Money, and Decimal:

const coord2_3 = Point(2, 3);
coord2_3.x = 4; // No longer the same point!

Immutable objects are a well-known pattern in industry. In chapter 2, we discussed
how Object.create allows you to define immutable fields by using data descriptors
upon creation. Generally speaking, an immutable object is one for which you can’t set
any fields. Its data descriptors have writable: false for all fields. A popular pattern
based on this is called the Value Object pattern. A value object is immutable upon

101Working with immutable objects
creation and has some fields to describe identity and comparison. Similar to the
guidelines imposed by pure functions, here are some guidelines to keep in mind
when deciding whether to use this pattern:

 Has no global identity—There’s no way to fetch an instance of a value object by
some sort of ID. Conversely, transactions are globally identified by their hash
values (transactionId). Similarly, a Block is identified by index value or posi-
tion in the ledger.

 Closed to modification—When the object is instantiated, you may not alter any of
its properties. Doing so results in the creation of a new object or an error.

 Closed to extension—You may not dynamically add properties to (mixins) or
remove properties from this object, and you may not derive new objects from it
(inheritance).

 Defines its own equality—With no unique ID, it’s beneficial to implement an
equals method that knows how to compare two value objects based on their
properties.

 Override toString and valueOf—Value objects need seamless representation as
either a string or primitive. Overriding methods such as toString and valueOf
affects how an object behaves next to a mathematical symbol or when concate-
nated with a string.

For our blockchain, we’re going to represent the funds field of Transaction as a
Money object. Before we look at the internal details, let’s see how it’s used:

Money('B|', 1.0); // represents 1 Bitcoin
Money('$', 1.0); // represents 1 US Dollar
Money.zero('$'); // bankruptcy!

Let’s implement Money by using a simple function instead of a class. Unlike class con-
structors, normal functions can be curried. So we can do things like

const USD = Money('$');

USD(3.0); // $ 3
USD(3.0).amount; // 3
USD(7.0).currency; // $
[USD(3.0), USD(7.0)].map(prop('amount')).reduce(add, 0); // 10

Also, Money supports a few key operations such as adding, subtracting, rounding, and
(most importantly) implementing some sense of equality. Why is equality import-
ant? Without some field describing its identity, value objects are comparable only by
their attributes:

USD(3.0).plus(USD(7.0)).equals(USD(10)); // true

In the case of Money, we’re not interested in using inheritance or any of the instantia-
tion patterns of previous chapters, which are intended to build complex objects; using

102 CHAPTER 4 Writing composable, pure code

a simple function to return an object literal is more than enough. This pattern also
goes by the name Function Factory.

 To implement the “closed for modification and extension” guarantees, we can use the
Object.freeze and Object.seal JavaScript built-in methods, respectively. Both methods
are easy to compose. The next listing shows the implementation details of Money.

const BTC = 'B|';

const Money = curry((currency, amount) =>
 compose(
 Object.seal,
 Object.freeze
)(Object.assign(Object.create(null),
 {
 amount,
 currency,
 equals: other => currency === other.currency &&
 amount === other.amount,
 round: (precision = 2) =>
 Money(currency, precisionRound(amount, precision)),
 minus: m => Money(currency, amount - m.amount),
 plus: m => Money(currency, amount + m.amount),
 times: m => Money(currency, amount * m.amount),
 compareTo: other => amount - other.amount,
 asNegative: () => Money(currency, amount * -1),
 valueOf: () => precisionRound(amount, 2),
 toString: () => `${currency}${amount}`
 }
))
);

// Zero
Money.zero = (currency = BTC) => Money(currency, 0);

// Static helper functions
Money.sum = (m1, m2) => m1.add(m2);

Money.subtract = (m1, m2) => m1.minus(m2);

Money.multiply = (m1, m2) => m1.times(m2);

function precisionRound(number, precision) {
 const factor = Math.pow(10, precision);
 return Math.round(number * factor) / factor;
}

The code in listing 4.13 packs in a lot of functionality because we’re trying to arrive
at an object that behaves and feels like a primitive. Aside from making the object
immutable and closed for extension, we’re instantiating it from a “null object” proto-
type Object.create(null) in a single step, using Object.assign (chapter 3). Money

Listing 4.13 Details of the Money value object

The new object is first
frozen and then sealed.

Uses Object.assign with Object.create(null)
to create a value object without any
prototype references, making it closer
to a true value in the system

Overrides Object#valueOf
and Object#toString to help
JavaScript’s type coercion

Implemented outside the
object literal definition to
make static methods

103Working with immutable objects
won’t automatically inherit any of Object.prototype’s member fields (such as toString
and valueOf), in particular one that doesn’t apply in this case: Object#isPrototypeOf.
The downside is that you’re responsible for implementing these properties correctly.

 Hence, we’ll implement toString and valueOf to work as follows:

const five = Money('USD', 5);
console.log(five.toString()); // USD 5

valueOf is a bit more interesting. Unlike with toString, you don’t invoke valueOf
directly. JavaScript automatically calls it when the object is expected to behave as a
primitive, especially in a numeric context. When the object is next to a math symbol,
we can downgrade (coerce) Money to Number. Then you can wrap that result back into
Money with proper a currency denomination, if needed:

five * 2; // 10
five + five // 10
Money('USD', five + five).toString() // USD 10

Now let’s see the effects of applying Object.seal and Object.freeze to these objects.
We used compose to apply each method sequentially. Object.freeze prevents you
from changing any of its attributes (remember that we’re assuming strict mode), as
shown here:

const threeDollars = USD(3.0);
threeDollars.amount = 5;

// TypeError: Cannot assign to read only property 'amount' of object '[object
Object]'

Object.isFrozen(threeDollars); // true

And Object.seal prevents clients from extending it:

threeDollars.goBankrupt = true;
// TypeError: Cannot add property goBankrupt, object is not extensible

delete threeDollars.plus;
// TypeError: Cannot delete property 'plus' of [object Object]

Object.isSealed(threeDollars); // true

Finally, notice that all the methods in Money (plus, minus, and so on) use copy-on-
write semantics, returning new objects instead of changing the existing one and
embracing the principles of purity we’ve discussed so far.

Pure object manipulation
In functional programming, there’s an approach to manipulate data inside objects
known as lenses so that you don’t have to roll your own version of copy-on-write.

104 CHAPTER 4 Writing composable, pure code
At this point, you’ve learned how to structure functional code by using composition
and currying. Primitive data can be manipulated and mutated at will (because it’s
immutable by design), whereas custom data objects need a bit more attention. In the
latter case, using value objects when appropriate or passing copies of data to code can
help divert lots of nasty bugs.

 With all the fundamentals behind us, let’s improve the design of our code with a
paradigm known as point-free coding—the last piece needed to implement the logic
of calculating the balance of a user’s digital wallet.

4.6 Point-free coding
Point-free coding is a byproduct of adopting declarative programming. You can use
point-free coding without FP. But because point-free is all about improving the read-
ability of code at a glance and making it simpler to parse, having the guarantees
imposed by FP furthers this cause.

 Learning the point-free style is beneficial because it allows developers to under-
stand your code at first sight without necessarily having to dive into the internals.
Point-free refers to a style in which function definitions do not explicitly identify the
arguments (or the points) they receive; they are implicitly (tacitly) passed through the
flow of a program, usually with the help of curry and compose. Removing this clutter
usually reveals a leaner code structure that humans can parse visually with ease. By
being able to see the forest for the trees, you can spot higher-level bugs that could
arise from using bad logic or making bad assumptions about requirements.

 Because JavaScript has curried, first-class functions, we can assign a function to a
variable, use this named variable as an argument to compose, and effectively create an
executable outline of our code. In this section, you’ll learn about the benefits of using
a point-free style with JavaScript, such as

 Improving the legibility of your code by reducing syntactical noise
 Making composition clearer and terser
 Avoiding introducing unnecessary parameter names
 Building a vocabulary describing the actions and tasks that make up your

application

Before we begin learning about this style, it helps to see it in comparison with non-
point-free coding. Let’s do a quick review:

(continued)

A lens allows you to target a specific property or path inside an object so that you can
perform changes to it in a composable, immutable manner. Behind the scenes, it
uses copy-on-write, but everything is done for you automatically. You can learn more
about this technique on your own by exploring the Ramda lens APIs (https://ramdajs
.com/docs/#lens).

https://ramdajs.com/docs/#lens
https://ramdajs.com/docs/#lens
https://ramdajs.com/docs/#lens

105Point-free coding
function countWordsInFile(file) {
 const fileBuffer = fs.readFileSync(file);
 const wordsString = fileBuffer.toString();
 const wordsInArray = wordsString.split(/\s+/);
 return wordsInArray.length;
}

To get a high-level idea of what this function does, you’re forced to read every statement
and trace the flow. Each statement in the function describes in detail how every function
is called and the parameters (or points) each function receives at the call site.

 On the other hand, using compose removes the unnecessary overhead and focuses
on the high-level steps required to create a higher-level representation of the same
logic. When we applied FP to countWordsInFile earlier, we arrived at this code:

const countWordsInFile = compose(
 count,
 split,
 decode('utf8'),
 read
);

This program is point-free. Notice that nothing in this program tells you how to
invoke countWordsInFile. The only thing you see is the structure of this function or
what steps are involved. Because the signature of the function (and all the embedded
functions) is missing, you may feel that this style obscures the code a bit for someone
who is not familiar with these functions. That point is a valid one, and I’ve seen how it
can make using a debugger a bit more challenging. But for someone who is familiar
with this style and knows their way around a debugger, point-free coding makes com-
position much cleaner and allows you to visualize the high-level steps as though they
were plug-and-play components.

 A common analogy for point-free code is Lego bricks. When you’re looking at a
Lego structure from a distance, you can’t see the pins that hold everything together,
yet you appreciate the overall structure. If you look at the imperative version of
countWordsInFile once more, the “pins” in this case refer to the intermediate vari-
able names that connect one statement to the next.

 Suppose that you’re working on another task, such as counting an array of serial-
ized block data from a JSON file. At a high level, you should be able to see that the
structure of this code is similar to the preceding snippet of code. The only difference
is that instead of dealing with space-separated words, you will deal with parsing an
array of elements. Pure functions are easy to swap in and out because they don’t
depend on any external data other than their own arguments. countBlocksInFile is
implemented simply by swapping split with JSON.parse:

const countBlocksInFile = compose(
 count,
 JSON.parse,
 decode('utf8'),

106 CHAPTER 4 Writing composable, pure code
 read
);

Again, this swap is evident because point-free coding cleans up the process of passing
functions and arguments around, allowing you to focus on the task at hand, such as
changing a red Lego brick for a green one. It should be obvious at this point that
countBlocksInFile is another Lego bundle (a module) that can be composed
(pinned) further. You can build entire complex applications from this fundamental
idea (figure 4.10).

All these Lego bricks become the taxonomy, or vocabulary, if you will, of the Lego set
that is your application.

 Now that you understand how to structure your code by using composition and
currying, let’s tackle a more complex imperative-to-functional transformation that
involves computing a user’s digital-wallet balance.

4.7 Imperative to functional transformation
In chapter 3, I looked at the skeleton of the Wallet class (listing 3.9) but deliberately
omitted the balance method. Here is that snippet of code again:

class Wallet {
 constructor(publicKey, privateKey) {
 this.publicKey = publicKey
 this.privateKey = privateKey
 }
 get address() {
 return this.publicKey
 }
 balance(ledger) {
 //...
 }
}

Now we’re prepared to fill in the complex logic details. To compute the balance of a
user, given a blockchain (ledger) object argument, we need to tally all the transactions
from all the blocks that have been mined for that user since the beginning of the

read

decode

JSON.parse

count
Application

countBlocksInFile

=

otherFunctions

=countBlocksInFile

Figure 4.10 Functions composed to build entire applications

107Imperative to functional transformation
ledger. We can omit the genesis block because we know that it doesn’t carry any data
we’re interested in.

 Let’s look at this problem again with an imperative mindset and compare it with a
functional one. This time, we’ll be using all the bells and whistles that we’ve learned
thus far. The algorithm can look like the following listing.

balance(ledger) {
 let balance = Money.zero();
 for (const block of ledger) {
 if (!block.isGenesis()) {
 for (const tx of block.data) {
 if (tx.sender === this.address) {
 balance = balance.minus(tx.funds);
 }
 else {
 balance = balance.plus(tx.funds);
 }
 }
 }
 }
 return balance.round();
}

Comparing this algorithm with the FP guidelines, you can see that it involves looping
over the blockchain data structure, which means that you need to keep a running
count of the balance as you iterate through all blocks and then through each transac-
tion of that block. Within each iteration, there’s a lot of branching to accommodate
different conditions—an imperative “pyramid of doom,” you might say. Let’s revisit
that flow in figure 4.11.

 All the diamond-shaped boxes represent branching logic, nested within circulat-
ing arrows that represent loops. Arguably, this figure is not trivial to parse; it rep-
resents a simple piece of code.

 In addition, listing 4.14 has side effects in the way it references this to access a wal-
let’s properties and reassigns balance at each iteration. Refactoring this code by using
a hybrid (FP + OO) approach involves

 Making the data explicit function arguments instead of implicitly
 Transforming loops and nested conditionals to a fluent data transformation

with map and filter
 Removing variable reassignments with an immutable reduce operation

The best course of action is to extract the logic into its own function, free from side
effects, and have balance internally delegate to it with all the initial data. We can call
this new method computeBalance:

balance(ledger) {
 return computeBalance(this.address, ledger);
}

Listing 4.14 Imperative algorithm for computing total balance

ledger is a Blockchain object, and iterating over
it delivers each block. You’ll learn how to make
any object iterable in chapter 7. For now, you
can safely assume that it’s an array of blocks.

If the user is the sender of the
transaction, we discount the
amount in the transaction;
otherwise, we add it to the
running balance.

108 CHAPTER 4 Writing composable, pure code

R
coll
tran
(da

t

Ca
th

fr
tra
It’s reasonable to start with the handy array essentials we’re familiar with: map, filter,
and reduce. The following code represents the same algorithm, functionally inspired.
Figure 4.12 shows what the new flow will look like.

 There’s a small caveat in the functional approach shown in listing 4.15, which can be
a bit confusing. Because the flow of data involves processing the array of blocks and,
within each one, an array of transactions, we’re forced to deal with an array of arrays. To
make things simple, when you encounter this issue, the best thing to do is flatten these
structures. You’ll learn in chapter 5 that this occurrence is common in functional code.
For now, we’ll use Array#flat to flatten the nested structure.

function computeBalance(address, ledger) {
 return Array.from(ledger)
 .filter(not(prop('isGenesis')))
 .map(prop('data'))
 .flat()
 .map(balanceOf(address))
 .reduce(Money.sum, Money.zero())
 .round();
}

Listing 4.15 Calculating balance in Wallet with FP

No

Start

Stop

Balance = 0

Next block in

ledger

Is genesis?
Yes Next pending tx

in block

No
Address matches

sender?

Yes
Add funds to

balance

Subtract funds

from balance

Done

Round balance

Figure 4.11 Imperative flow of control for the logic in calculating a user’s total balance in a
blockchain

Array.from turns any
iterable into an array

Uses the utility functions not and
prop to call isGenesis (check code
repository for implementation)

eads the
ection of
sactions
ta) from
he chain

The resulting array of arrays from the
previous step is flattened into a single array.

lculates
is user’s
balance

om each
nsaction Uses Money.sum function as a reducer, starting

from Money.zero, and tallies the total

Invokes the
Money.round method
on the result

109Imperative to functional transformation
For the most part, you can see that this algorithm is a
reincarnation of the imperative logic but takes advantage
of the higher-order functions from the array that con-
nects each piece of the transformation, radically chang-
ing the flow of data. Also, the fact that we’re performing
addition through code such as reduce(Money.sum, Money
.zero()) speaks to the mathematical nature that func-
tional programs tend to exhibit.

 For completeness, here’s the balanceOf function
used in the functional version, now done as a lambda
expression, which maps a user ID in a transaction to a pos-
itive or negative monetary value depending on whether
said user is the sender or the recipient:

const balanceOf = curry((addr, tx) =>
 Money.sum(
 tx.recipient === addr ? tx.funds :

Money.zero(),
 tx.sender === addr ? tx.funds.asNegative() :

Money.zero()
);
)

If you look back at listing 4.15 again, perhaps the most
complex step you see is the call to flat on the array of
arrays structure that is built during the flow of the data.
Here’s flat with a simple example so that you can see
how it peels off the nested array:

[['a'], ['b'], ['c']].flat() // ['a', 'b', 'c']

Because the algorithm performs a map operation beforehand, there’s a shortcut: using
Array#flatMap method directly. We’ll revisit map and flatMap in more detail in chap-
ter 5, but for now, we’ll go over them in order to understand how computeBalance
works. As you can see, flat is intuitive, but what the heck is flatMap? The combina-
tion of map followed by flat occurs frequently in functional programs, so often that it
makes sense to alias the composition of these two methods as a single method. The
agreed-upon name in the functional communities is flatMap. The preceding code
simplifies to the next listing.

function computeBalance(address, ledger) {
 return Array.from(ledger)
 .filter(not(prop('isGenesis')))
 .flatMap(prop('data'))

Listing 4.16 computeBalance using map, filter, and reduce

Stop

Array

of blocks

Remove the

genesis block.

Fold array of

blocks into array of

pending tx

Convert tx to a

+/– amount

based on recipient

Sum all monies

Round balance

Start

Figure 4.12 Functional
flow of control for the logic
in calculating a user’s total
balance in a blockchain

Substituting flatMap
for map and then flat

110 CHAPTER 4 Writing composable, pure code
 .map(balanceOf(address))
 .reduce(Money.sum, Money.zero())
 .round();
}

With these APIs, you can solve virtually any array processing task you need and proba-
bly even remove loops from your code. This capability is the future of working with
collections in JavaScript.

 This listing is a good stopping point, but for the joy of it, let’s go one step further.
In functional programs, it’s not common to use dot notation to invoke sequences of
functions (map(...).filter(...).reduce(...)), as this notation assumes the inner
workings of an object chaining these operations together. Instead, use their extracted,
curried function forms with the help of compose to thread through the entire flow of
data, passing said object to each call (no assumptions), making it point-free!

 Let’s go over this technique slowly. When extracting a method into its own func-
tion, place the instance object as the last argument, and curry the function. The fol-
lowing listing shows how to extract Array#map(f).

const map = curry((f, arr) => arr.map(f));

To embed map in a chain, partially apply the first argument, the mapper function:

map(balanceOf(address));

The dynamic array (arr) argument isn’t provided directly because compose will do it
for you in a point-free way. Most third-party FP libraries carry these helper functions
(map, filter, reduce, and many more) in curried form. The more functional version
of this code, shown in the next listing, takes advantage of fine-grained, point-free
design. The point-free design requires a fixed address parameter, whereas ledger is
provided at the call site.

const computeBalance = address =>
 compose(
 Money.round,
 reduce(Money.sum, Money.zero()),
 map(balanceOf(address)),
 flatMap(prop('data')),
 filter(
 compose(
 not,
 prop('isGenesis')
)
),

Listing 4.17 Extracting map in curried form

Listing 4.18 Point-free version of computeBalance

Array arr is the
last parameter.

With compose, the
logic reads right to left.

Uses the curried extracted
forms of the equivalent
Array#filter method

Uses nested composition
to make the code more
modular

111Native function chains
 Array.from
);

const computeBalanceForSender123 = computeBalance('sender123');
computeBalanceForSender123(ledger);

FP takes a little getting used to, but thinking this way puts you on the path to writing
highly modular, maintainable, cleaner, and more reliable code. In fact, it saves you
from potential bugs because JavaScript gives you total freedom to mutate almost any-
thing, making your development experience a lot more enjoyable.

 Fanning out to pure functions like this one is a compelling idea that will become
more and more prominent as JavaScript continues to embrace more functional fea-
tures and make creating function chains a native part of the language.

4.8 Native function chains
Now that you understand the basic functional programming concepts, you’re one step
ahead in learning a new feature that could make landfall in the near future. In this
chapter, you learned (among other things) how to create functional chains by using
compose. One of the most noticeable qualities of this operator is that the flow of data
happens in reverse, which can be quite jarring for some people. Luckily, there’s a solu-
tion: the pipe operator. A close cousin of compose, pipe takes the functions in the nat-
ural left-to-right order. The buildout of pipe is exactly the same as that of compose.
The only change would be to use reduceRight instead of reduce:

const pipe = (...fns) => fns.reduceRight(compose2);

This operator is inspired by the way in which UNIX-based programs pipe data forward into
one another. With pipe, you could rearrange the logic to calculate a balance like this:

pipe(
 Array.from,
 filter(
 pipe(
 prop('isGenesis')
 not,
)
),

Third-party FP libraries
Functional languages such as Haskell and F# have built-in native operators to imple-
ment many of these techniques. In this chapter, you were introduced to the operators
compose and curry. Normally, you would not write these operators by hand. Instead
you’d import a third-party library such as Ramda (https://ramdajs.com), Crocks (https://
crocks.dev), Lodash (https://lodash.com), or UnderscoreJS (https://underscorejs.org)
to import a lot of these utility functions. You can find the ones used in this book in
the code repo (http://mng.bz/pVy2).

https://ramdajs.com/
https://crocks.dev/
https://crocks.dev/
https://crocks.dev/
https://lodash.com/
https://underscorejs.org/
http://mng.bz/pVy2

112 CHAPTER 4 Writing composable, pure code
 flatMap(prop('data')),
 map(balanceOf(address)),
 reduce(Money.sum, Money.zero()),
 Money.round
);

You’ll also find pipe in most FP libraries for JavaScript, such as Ramda and Crocks. If
you prefer this way of thinking, JavaScript has a nice surprise in store for you. Introduc-
ing the pipeline operator: |> (https://github.com/tc39/proposal-pipeline-operator).
Inspired by functional languages such as Elixir and F#, this native operator allows you
to call sequences of functions with the data flowing unidirectionally to the right with-
out needing any special third-party libraries.

 It’s important to start learning about this new feature now because when it
becomes official, it will radically change the way we write code. Here’s an example:

'1 2 3' |> split |> count; // 3

You can even mix it with lambda expressions:

'1 2 3' |> split |> count |> (x => x ** 2); // 9

Now imagine that you had some of the common array methods extracted in curried,
function form, as provided in these functional utility libraries. You’ll be able to write
code like this:

ledger
 |> Array.from
 |> filter(b => (b |> prop('isGenesis') |> not))
 |> flatMap(prop('data'))
 |> map(balanceOf(address))
 |> reduce(Money.sum, Money.zero())
 |> Money.round;

This example is a terser, more idiomatic way of designing code, and it pairs extremely
well with curry for a declarative, native point-free design. For details on experiment-
ing with this operator now, see appendix A.

From now on, if anyone asks whether JavaScript is object-oriented or functional, say
“Yes!” The previous chapters highlighted the object-oriented nature of JavaScript.

More about functional programming in JavaScript
JavaScript’s support for the functional programming paradigm is a huge subject to
cover. In this book, I’ll cover only enough FP to open your eyes to how it’s steering
JavaScript’s future, as well as helping you become proficient and do more with less.
If you’d like more information about functional programming and broader topics, you
can read about them in detail in my 2016 book Functional Programming in JavaScript
(http://mng.bz/0mMN).

https://github.com/tc39/proposal-pipeline-operator
http://mng.bz/0mMN

113Summary
This chapter focused on functional programming and the art of composing pure,
higher-order functions. Pure functions guarantee consistent and predictable results
based on their input. Their purpose is clearly depicted by their signatures or, as Eric
Evans puts it in Domain-Driven Design (Addison-Wesley Professional, 2013), “A pure
function is an intention-revealing interface.”

 Although the functional paradigm has many benefits, it doesn’t have to be an all-or-
nothing process. I deliberately used a hybrid style for the blockchain application with
OO and FP concepts intertwined. You can not only take advantage of prototypal object
models, but also create highly testable and portable modules of functions that encapsu-
late your critical business logic. Functional programming helps you write more robust
and bug-free code, especially in a language such as JavaScript, where almost everything
is mutable. We’ll circle back to coding with immutability in chapter 5.

Summary
 JavaScript’s higher-order functions are the means by which we can achieve func-

tional code.
 Code written in a functional style is declarative, composable, lazy, and simple to

reason about.
 The composition of pure functions is the bread and butter of any functional

codebase.
 Shifting to a functional mindset requires a different approach to problem-solving

based on decomposing code into fine-grained behavior.
 Lazy programming allows you to defer computation, and with curry, you can cre-

ate composable software by using functions of any arity (number of arguments).
 Learning about FP principles will give you the competitive edge you need to

begin using the new JavaScript features that will be available in the years to come.
 Using the pipeline operator (|>) makes it incredibly easy and idiomatic to imple-

ment point-free function chains.

Higher-kinded
composition
The purpose of abstraction is not to be vague, but to create a new semantic level in
which one can be absolutely precise.

—Edgar Dijkstra

In chapter 4, you learned how function composition leads to fluent, compact, and
declarative code when you use compose to chain your function’s inputs and outputs
as data passes through them. Composition has a lot of benefits because it uses Java-
Script’s strongest feature, as I’ve said many times: higher-order functions. With func-
tions, you can achieve low-level composition at the lowest unit of abstraction. But a
higher-kinded composition also exists in the way objects compose. Making objects
compose as strongly as functions do is a key idea that we’ll discuss in section 5.3.

This chapter covers
 Transforming arrays and objects safely with map

and flatMap

 Composable design patterns with algebraic
data types

 Writing a Validation data type to remove
complex branching logic

 Chaining ADTs using the new bind operator (::)
114

115
 The type of composable object pattern you’ll learn about in this chapter is known
as the Algebraic Data Type (ADT) pattern. An ADT is an object with a particular, well-
known interface that allows a similar abstraction to compose to chain multiple ADTs
together. Much like any class, ADTs can also contain or store other objects, but they
are much simpler than a class in that they model a single concept, such as validation,
error handling, null checking, or sequences. Because you’ve learned about function
composition, you can see that it’s simple to compose functions in a world where noth-
ing fails and all the inputs and outputs of your functions are well-defined. It’s a differ-
ent story when you also need to validate data and catch exceptions while taking
advantage of this pattern. Learning to use ADTs is extremely beneficial for this pur-
pose because they provide concise APIs that allow you to build whole programs from
simpler parts—composition at its core.

 Take a moment to reflect on some of the problems we tackled in chapter 4.
Given a user’s digital wallet address, for example, we computed the total amount of
Bitcoin in the blockchain. But what would happen if the provided address was null?
Well, in that case, the program would fail because we didn’t add any guards against
this possibility.

 More generally, how can we deal with invalid data (null, undefined) flowing
through a composition sequence? The syntax of compose doesn’t give you much room
to insert imperative conditional validation statements between functions. Rather than
clutter each function with common validation logic, your best bet is to extract it, as
shown in the following listing.

compose(f3, validate, f2, validate, f1, validate);

function validate(data) {
 if(data !== null) {
 return data;
 }
 throw new TypeError(`Received invalid data ${data}`);
}

This process doesn’t work, however, because

 It’s repetitive.
 You lose the context in which validation takes place, which means that you can’t

apply specific rules or exit with a proper validation message in the event of a
failure.

 Throwing an exception creates a side effect.

As far as the last point is concerned, if the first function fails to produce a useful
result, chances are that the rest of the flow shouldn’t be allowed to continue. The
same thing happens when you’re working with some third-party code that may throw
exceptions. In the imperative world, you would add try/catch guards. But again,

Listing 5.1 Embedding validation checks before each composed function

Pass the data along
to the next function
in the chain.

Otherwise, exit
with an error.

116 CHAPTER 5 Higher-kinded composition
try/catch is not something you can easily plug into compose; it’s an impedance
mismatch between FP and OO, and you’d be fighting against FP to try to keep things
linear and point-free. Take a look at the next listing.

compose(
 c => {
 try {
 return f3(c);
 }
 catch(e) {
 handleError(e);
 }
 },
 b => {
 try {
 return f2(b);
 }
 catch(e) {
 handleError(e);
 }
 },
 a => {
 try {
 return f1(a);
 }
 catch(e) {
 handleError(e);
 }
 }
)

This poor design is a result of combining paradigms the wrong way. Instead of throw-
ing an error abruptly, we might like to handle this task in a way that mitigates the side
effect. To fix this problem, we need to add the necessary guardrails or wrappers that
can control the context in which a function and its validation operation execute, yet
keep things separate, compact, and declarative. Does that sound like a tall order? It is
if we don’t have the necessary techniques in place. This chapter teaches these tech-
niques, all of which revolve around higher-order functions, with the help of some
more FP principles.

 ADTs expose a well-known, universal API that facilitates composability. You’ll learn
that the map interface (in the same spirit as Array#map) indicates that a particular
object behaves like a functor. Similarly, the flatMap interface indicates that an object
behaves like a monad. We’ll unpack both of these terms soon. Both of these interfaces
allow an ADT to compose with others.

NOTE The terms functor and monad originate from category theory, but you
don’t need to understand mathematics to learn and use them in practice.

Listing 5.2 The inconvenience of mixing try/catch with compose

Because each function is
surrounded by imperative
error handling code, you
can’t take advantage of a
declarative, point-free
style (chapter 4).

117Closing over data types
After teaching some of the fundamentals, this chapter works its way up to creating an
ADT from scratch, tackling the complexity behind validating or checking the contents
of a block, transaction, and even the entire blockchain data structure. By the end,
you’ll understand what code like this does:

Validation.of(block)
 .flatMap(checkLength(64))
 .flatMap(checkTampering)
 .flatMap(checkDifficulty)
 .flatMap(checkLinkage(previousHash))
 .flatMap(checkTimestamps(previousTimestamp));

This code addresses all the concerns we raised earlier, although how may not be obvi-
ous yet. The code removes repetition, creates no additional side effects, and (best of
all) is declarative and point-free. This type of abstraction Validation creates a closed
context around the validation logic. Let’s begin by understanding what we mean by
closed context.

5.1 Closing over data types
When we write functions, it would be ideal to assume the perfect application state.
That is, all the data coming in and out of our functions is always correct and valid, and
none of the objects in our system have a null or undefined value. This state would
allow us to reduce the boilerplate of data checks everywhere. Sadly, this situation is
never the case. Alternatively, we could think about wrapping functions with some
abstraction that always checks for invalid data of any nature. In this section, we’ll cre-
ate a simple abstraction to start getting used to the pattern presented in this book. In
section 5.5, we’ll build on that pattern to build an actual ADT.

 Functions can become complex when we interleave their business logic with side
work such as data validation, error handling, or logging. We can say that these con-
cerns are tangential to the task at hand, yet they are important parts of the working
application. Other tasks may include handling exceptions or logging to a file. We’ll
call these tasks effects.

NOTE An effect is not to be confused with a side effect. A side effect may be a
type of effect, as used in this context, but an effect is more of an arbitrary task.

Let’s focus on one of these effects: data validation. Suppose that you’re writing a small
algorithm, using a sequence of functions. At each step, you want to make sure that the
arguments each function receives are valid (not null, greater than zero, not empty,
and so on). These are important to ensure that the algorithm is correct from a practi-
cal point of view but are not essential parts of the algorithm itself. Instead of cluttering
each function, you remove or wrap this effect in some form of abstraction.

 Suppose that this hypothetical algorithm has three steps: f1, f2, and f3. You
already saw the interleaving happening in this code in listing 5.1:

compose(f3, validate, f2, validate, f1, validate);

118 CHAPTER 5 Higher-kinded composition

ion

The data is validated before each function runs. Let’s improve this code to remove the
repetition. Using the lessons of chapter 4, we’ll wrap these functions (close over them),
using a higher-order function that accepts the function being executed as input and
the data in curried form. Higher-order functions are great at converting some body of
code into callable form. This approach would allow validate to decide whether to
apply the function based on the validity of the data provided.

 To illustrate a possible solution, let’s make our problem more concrete by focusing
only on calling functions, with the condition that the null check is successful (not
null). Consider a function such as applyIfNotNull:

function applyIfNotNull(fn) {
 return data => {
 if (data !== null) {
 return data;
 }
 throw new Error(`Received invalid data: ${data}`);
 }
}

compose(applyIfNotNull(f3), applyIfNotNull(f2), applyIfNotNull(f1));

As you can see, the null check is repeated around every function call. Because apply-
IfNotNull is curried manually, we can remove duplication by mapping it over the
functions that make up your business logic, as shown in the next listing.

compose(...[f3, f2, f1].map(applyIfNotNull));

This step gets us closer to a more declarative, expression-oriented code instead of
imperative branching logic, but we still need to account for two items:

 A null check is not the only form of validation we’ll need in the real world. We
need to support more kinds of logic.

 We’re using an exception, which is itself a side effect, to break out of the logic
in a dramatic fashion.

We need to increase the level of abstraction from a function to some form of contex-
tual data structure that can somehow keep track of the validation results along the way
and apply the functions accordingly. One way is to use a wrapper object that encapsu-
lates data and abstracts the application of an effect to this data as part of exercising its
business logic, much as applyIfNotNull did earlier, in an immutable way without
leaking side effects.

 Possibly the simplest type of container data structure in JavaScript is Array, which
among its comprehensive set of methods has a few that we can use for this type of
abstraction:

Listing 5.3 Applying multiple functions to compose with map

Applies applyIfNotNull to every funct
and then spreads the resulting array
as arguments to compose

119Closing over data types
 A static function to construct new containers with a value—For a class C, this function
is usually called C.of or C.unit. The function, which is similar to Array.of, is
also called a type-lifting function as it allows you to bring some typed variable into
a context on which you will perform operations. Lifting some object and plac-
ing it in a box is a good analogy.

 A function to transform this data—This transformation is usually done via a map
method on the object with a specific contract. map is shared by all instances, so it
should be defined at prototype level (C.prototype.map).

 A function to extract the result from the container—This function is implementation-
specific. For arrays, you can use something like Array#pop.

Anything beyond this protocol depends on what additional logic you need for the spe-
cific wrapper.

 Before we start implementing our own wrappers, let’s continue down the path of
using an array to represent encapsulation and immutability. This practice will help us
warm up on the coding patterns used by ADTs.

 Wrapping a value inside some container, such as an array literal, gives you auto-
matic fluent-coding capabilities on several values, not just one. For the sake of this dis-
cussion, let’s focus on one value. Consider this example. Given a string, suppose that
you want to remove duplicate characters and capitalize the final string. With input of
"aabbcc", for example, the result should be "ABC".

 Simple enough. As you know, the best way to apply a sequence of computations to
an array of elements is through map, which is a stateless method, so you’re never
changing the original array that called it or its elements. This situation satisfies the
immutability requirement. Also, we need methods to put a value inside the array and
then a way to extract the data. For this task, we can use lifting operations Array.of
and Array#pop, respectively, as shown in the next listing.

const unique = letters => Array.from(new Set(letters));
const join = arr => arr.join('');
const toUpper = str => str.toUpperCase();

const letters = ['aabbcc']
 .map(unique) // [['a', 'b', 'c']]
 .map(join) // ['abc']
 .map(toUpper) // ['ABC']
 .pop();

letters; // 'ABC'

JavaScript gives us some syntactic improvement (in the shape of a box) by using the
array literal directly:

['aabbcc']
 .map(unique)

Listing 5.4 Mapping functions on an array

Uses the capabilities of
Set, which accepts an
iterable object, to
remove duplicates

Could have also used
Array.prototype.shift or [0]

120 CHAPTER 5 Higher-kinded composition
 .map(join)
 .map(toUpper)
 .pop(); // 'ABC'

If you want to be a little more precise, you can use the Array.of as a generic construc-
tor function:

Array.of('aabbcc')
 .map(unique)
 .map(join)
 .map(toUpper)
 .pop(); // 'ABC'

NOTE When you construct a new array, using the Array constructor function
with new is not the best way to go about it. This function has unpredictable
behavior, depending on the type used. The function new Array('aabbcc'),
for example, creates an array with the single element ['aabbcc'], as we’d
expect. But new Array(3) creates an empty array with three empty slots: [, ,].
The Array.of API corrects for this situation, but in most cases, the simplest
approach is to use array literal notation directly: ['aabbcc'].

The container that results from using an array is analogous to what we call an identity
context. This term comes from the simple yet popular identity function (const
identity = a => a), which you learned about in chapter 4. This function is commonly
used in functional programs and echoes the value it’s given. In FP, identity means that
some value is left untouched.

 Similarly, an identity context would not have any computational logic of its own. It
wraps a single value and doesn’t do any additional processing beyond what you pro-
vide in your mapping functions; it has no effect on the data. We say that it’s context-
less, or side-effect-free.

 Let’s take the array example a bit further. One way we could easily implement an
Id class in JavaScript is to extend from Array, as shown in listing 5.5. This example is
meant only to illustrate how the map operator could apply generically over simple con-
tainers that enclose a single value. Normally, I don’t recommend extending (monkey-
patching) from standard types; this example is for teaching purposes, and its use will
become clearer later.

class Id extends Array {
 constructor(value) {
 super(1);
 this.fill(value);
 }
 }

 Id.of('aabbcc')
 .map(unique)

Listing 5.5 Implementing a contextless container by extending from Array

Initializes the underlying array
with a size of 1 because we need
to wrap only a single value

Inherits Array.of as the
type-lifting function

121Closing over data types
 .map(join)
 .map(toUpper)
 .pop(); // 'ABC'

Both Id and [] (empty array) are examples of closed contexts. Although this example
may not look exciting, there’s more than meets the eye here. Concretely, Id

 Enables a fluent data transformation API in which each stage performs a pre-
dictable transformation toward the end result, as in an assembly line.

 Provides some level of data encapsulation.
 Performs all operations in an immutable fashion because every stage of the pro-

cess returns a new container with a new value. The mapped function may trans-
form the data inside Id to any shape, as long as it advances our logic toward the
final outcome. We say that the mapping function is any function from a -> b (a
and b are any objects) that changes the container from Id(a) to a new Id(b).

Conceptually, programming with containers metaphorically resembles an assembly
line or a railway, as shown in figure 5.1.

NOTE In section 5.5.4, you’ll see that implementing validation (which is a
binary operation) with wrappers will result in two paths or railways.

This last point, which refers to creating new containers as a result of applying func-
tions, is the most important one to guarantee that the mapped functions are pure.
Remember that purity is the key ingredient to make your code simple to reason about.
Take as examples Array’s sort and reverse, which modify the original object in
place. These APIs are harder to use because they can lead to unexpected behavior. On
the other hand, immutable APIs like the ones in section 5.2 are much safer to use.

Inherits Array#pop to extract
the value from the container

Id.of

unique

join

toUpper

map

= Id('ABC')

map

map

'aabbcc'

= Id('aabbcc')

= Id(['a','b','c'])

= Id(['abc'])

Figure 5.1 Assembly-style computing with
containers. In this case, every step of the line
maps a different transformation, creating a
new intermediate result along the way until
reaching the desired product.

122 CHAPTER 5 Higher-kinded composition
5.2 New Array APIs: {flat, flatMap}
Array#{flat, flatMap} are two major additions to the almighty, all-encompassing Java-
Script Array object. You saw these methods used briefly toward the end of chapter 4.
Both of these methods allow you to manage multidimensional arrays easily:

[['aa'], ['bb'], ['cc']].flat(); // ['aa', 'bb', 'cc']
[[2], [3], [4]].flatMap(x => x ** 2); // [4, 9, 16]

Like all the recently added Array methods, these operations are immutable; instead
of changing the original, they create new ones. Let’s start with flat.

5.2.1 Array.prototype.flat

Array#flat allows you to work with multiple array dimensions without having to
break out of your lean and fluent pattern. Here are a few examples:

[['aa'], ['bb'], ['cc']].flat().map(toUpper); // ['AA', 'BB', 'CC']

The method even has the built-in smarts to skip nested nonarray objects. Empty slots
in the array are left untouched:

[['aa'], , ['bb'], , ['cc']].flat().map(toUpper); // ['AA', 'BB', 'CC']

A fun fact about flat is that you can collapse structures of infinite depth:

[[[[['down here!']]]]].flat(Infinity); // ['down here!']

flat also allows you to work with functions that themselves return arrays. Recall from
listing 5.4 that unique takes a string and returns an array with all letters minus dupli-
cates. Mapping unique over ['aa', 'bb', 'cc'], for example, would produce a nested
structure [['a'], ['b'], ['c']], which we can easily flatten at the end:

const unique = letters => Array.from(new Set([...letters]));

['aa', 'bb', 'cc'].map(unique).flat(); // ['a', 'b', 'c']

Because map and flat are often used together, JavaScript provides an API that takes
care of both methods.

5.2.2 Array.prototype.flatMap

The map-then-flat sequence is used frequently in regular day-to-day coding. You
might iterate over all blocks in the chain and then iterate over all transactions within
each block, for example. Fortunately, a shortcut called flatMap calls both operations
at the same time, as shown in the following listing.

123The map/compose correspondence

ter
['aa', 'bb', 'cc'].flatMap(unique);

// ['a', 'b', 'c']

We all understand map and flatMap as operations that allow you to apply callback
functions to an array. Conceptually, however, these operations extend beyond arrays.
If you’ve read chapter 4 and understand the basics of functional programming, code
of this form should resemble a familiar pattern:

Id.of('aabbcc')
 .map(unique)
 .map(join)
 .map(toUpper);

Would you say that this code looks like composition? As a matter of fact, the following
code produces the same result ('ABC') as the previous one:

const uniqueUpperCaseOf = compose(toUpper, join, unique)

uniqueUpperCaseOf('aabbcc') // 'ABC'

How is it that map and compose lead to the same result? Except for minor syntactic dif-
ferences compared with compose, map and flatMap represent contextual composition
and are largely equivalent.

5.3 The map/compose correspondence
In section 5.1, I said that map allows objects (like Id and others) to apply functions.
This statement applies equally to flatMap. In this section, you’ll learn that at a funda-
mental level, both of these operators behave like compose, so in essence, using map is
nothing more than function composition, which cements the mental model of func-
tional programming.

 This equivalence is also important technically speaking, because you get all of the
benefits of using compose that we covered in chapter 4, but now applied to objects.
Let’s demonstrate this equivalence by defining map in terms of compose:

Function.prototype.map = function (f) {
 return compose(
 f,
 this
);
};

Now all functions inherit map automatically. Using it reveals once again the close cor-
respondence between the two:

 compose(toUpper, join, unique)('aabbcc'); // 'ABC'
 unique.map(join).map(toUpper) ('aabbcc'); // 'ABC'

Listing 5.6 Basic use of flatMap

unique returns an array. Instead of producing a
nested array, flatMap runs the built-in flat logic af
mapping the callback function to all elements.

124 CHAPTER 5 Higher-kinded composition
What this correspondence tells us is that all the benefits that you gain with the compo-
sition of functions can easily be applied to composite types. In our simple use cases,
map is an interface that allows both Array and Id to compose functions, and it will
allow any ADT you use to compose functions.

 Now that you’ve seen how these concepts intertwine, let’s define a universal inter-
face for map that allows any object that implements it to compose together.

5.4 Universal contracts
In the examples earlier in this chapter, you probably noticed that map and flatMap pre-
serve the same caller type. For arrays, both return new arrays; for functions, both return
new functions. This fact can’t be taken for granted. It’s a core part of the map interface,
one that is universally accepted and allows your objects to work with other functional
libraries, such as Ramda (https://ramdajs.com) or Crocks (https://crocks.dev). In this
section, you’ll learn a little bit about the theory behind patterns such as functors and
monads and how they are implemented in JavaScript.

The full theory on ADTs is extensive and better covered in books dedicated to func-
tional programming or abstract algebra. I’ll cover enough here so that you can unlock
the FP patterns that enable composable software, beginning with functors.

5.4.1 Functors

A book that focuses on the joy of programming with JavaScript and FP would not be
complete without a proper dose of functors, because functors bring out the best in the
language by relying on higher-order functions for data transformation.

 A functor is anything (such as an object) that can be mapped over or that imple-
ments the map interface properly. Arrays in JavaScript are close to being functors, for
example, and the map method enables a style of programming that’s superior to and
less error-prone than regular for loops. As you learned in section 5.3, compose makes
functions functors too, so you’ve used them quite a bit already without realizing it.

 For an object to behave like a functor, it needs to follow two simple rules, which
follow from the map/compose equivalence (section 5.3). I’ll use arrays again for sim-
plicity to illustrate rules:

 Identity—Mapping the identity function over a container yields a new container of
the same type, which is also a good indicator that map should be side-effect-free:

['aa','bb','cc'].map(identity); // ['aa', 'bb', 'cc']

Fantasy-land
The protocol for how functors and monads work in JavaScript, for the most part,
abides by the rules put forth in the fantasy-land specification (https://github.com/
fantasyland/fantasy-land). This document is thorough, and I highly recommend that
you take the time to understand it if you want to become a serious FP programmer.
This chapter definitely gives you a jump start.

https://ramdajs.com/
https://crocks.dev
https://github.com/fantasyland/fantasy-land
https://github.com/fantasyland/fantasy-land
https://github.com/fantasyland/fantasy-land

125Universal contracts
 Composition—Composing two or more functions, such as f after g, is equivalent
to mapping first g and then f. Both statements are equivalent to ['A', 'B', 'C']:

['aa','bb','cc'].map(
 compose(
 toUpper,
 join,
 unique
)
);

and

['aa','bb','cc']
 .map(unique)
 .map(join)
 .map(toUpper);

Notice that I’ve been using the word equivalent loosely. The reason is to avoid eliciting the
other forms of equivalence you’re accustomed to, such as the double equals operator
(==), which is loosely equivalent to type coercion, and triple equals (===), which is a
strict quality in value and type. Equivalent here means referentially transparent; the mean-
ing or result of the program doesn’t change if you substitute an expression for its value.

 Implementing a functor involves defining map with these simple rules and creating
the contract of a closed context described in section 5.1, such as the implementing of
a type-lifting function F.of, as well as a mechanism to extract the value from the con-
tainer, such as a get method. As you learned in chapter 3, the best way to apply reus-
able interfaces to any object is to use a mixin. Let’s refactor Id (shown in the next
listing) to take advantage of the Functor mixin.

class Id {
 #val;
 constructor(value) {
 this.#val = value;
 }

 static of(value) {
 return new Id(value);
 }

 get() {
 return this.#val;
 }
}

Functor is a mixin that exposes a map method, as shown in the following listing. map is
a higher-order function that applies the given function f to the wrapped value and
stores the result in the same container, like Array#map.

Listing 5.7 Id class with minimal context interface

Type-lifting
function

Getter to extract the
value from the container

126 CHAPTER 5 Higher-kinded composition

const Functor = {
 map(f = identity) {
 return this.constructor.of(f(this.get()));
 }
}

Because the functor contract must preserve the enclosing structure, we can figure out
the container instance calling it and invoke its static type-lifting constructor by using
this.constructor.of. The fact that we’re using classes makes this procedure simple
because it configures the constructor property and makes it easy to discover. Now
let’s extend Id with Functor as we did with Transaction back in chapter 3:

Object.assign(Id.prototype, Functor);

Everything continues to work as before. Array#map resembles the same contract as a
Functor’s map, so we can use it in the same way, as the next listing shows.

Id.of('aabbcc')
 .map(unique) // Id(['a', 'b', 'c'])
 .map(join) // Id(['abc'])
 .map(toUpper) // Id('ABC')
 .get(); // 'ABC'

Let’s visualize the inner workings of a functor as opening the container to expose its
value to the mapped function and then rewrapping the value in a new container, as
shown in figure 5.2.

If you glance once more at listing 5.9, you’ll notice that it’s fairly generic. Except for
an implementation of a value-extracting method (Id#get or Array#pop), everything
follows the generic functor contracts.

Listing 5.8 Functor mixin

Listing 5.9 Sequential data processing with the Id functor

map accepts a callback function to apply,
using identity as default function argument

Applies the callback function to the
value and wraps the result in a new
instance of the same container, using
the generic type-lifting function

Mapping from Id returns
new Id objects

Id

'aabbcc'

.map(unique)

Unfold the box.

Id

['a','b','c']

Id

'abc'

.map(join)

Id

'ABC'

.map(toUpper)

.get() = 'ABC'
Id.of('aabbcc')

Put value inside
the box.

Figure 5.2 The mapping of functions over a container

127Universal contracts
 Functors let you map a simple function to transform the wrapped value and put it
back in a new container of the same type. Frontend developers probably recognize
that the jQuery object behaves like a functor. jQuery is a functor as well and is one of
the first JavaScript libraries to popularize this style of coding (https://api.jquery.com/
jquery.map).

 Now let’s look at a slightly different case. What would happen if you were to map a
function that itself returns a container, such as mapping a function that returns an Id
object? From what you’ve learned about arrays in this chapter, an operator like flat-
Map is designed to solve this problem. To understand why, we’ll study monads.

5.4.2 Monads

Monads are designed to tackle composing container-returning operations. Compos-
ing functions that return Id can result in an Id inside another Id; when composing
Array, you get a multidimensional array, and so on. You get the idea.

 An object becomes a monad by implementing the functor specification and the
flatMap contract with its own simple protocol. The reason is that we’ll need to map
functions that return wrapped data. Suppose that each of the functions in this code
snippet returned an Id:

Id.of('aabbcc')
 .map(unique)
 .map(join)
 .map(toUpper)
 .get();

The result would look like figure 5.3.

Monads take chaining a sequence of computations to the next level so that you can
compose functions that work with the same container or other containers. We’re
going to stick with the same container for now, because this pattern is the most common

Error because expectsjoin

an Array value, not an Id instance

Id

'aabbcc'

.map(unique)

Id

['a','b','c']

.map(join)

Id.of('aabbcc')

Put value inside
the box.

unique is a function from string Id.

Figure 5.3 Mapping a function that returns an Id containing a wrapped value

https://api.jquery.com/jquery.map/
https://api.jquery.com/jquery.map/
https://api.jquery.com/jquery.map/

128 CHAPTER 5 Higher-kinded composition

.of
s,
by
t
one used in practice. For reference, the fantasy-land entry is at https://github.com/
fantasyland/fantasy-land#monad. Consider a monad M and equivalence as defined in
section 5.4.2:

 Left identity—Type-lifting some value a and then calling flatMap with function f
should yield the same result as if you simply called f with a. In code, both
expressions are equivalent:

M.of(a).flatMap(f) and f(a)

Let’s showcase left identity with simple arrays:

const f = x => Array.of(x**2);
Array.of(2).flatMap(f); // [4]
f(2); //[4]

 Right identity—Given a monad instance, calling flatMap with the type-lift con-
structor function should produce an equivalent monad. Given a monad instance
m, the snippets in the next listing are equivalent.

m.flatMap(M.of)) and m

Array.of(2).flatMap(x => Array.of(x)); // [2]
Array.of(2); // [2]

 Associativity—As numbers are associative under addition, monads are associa-
tive under composition. The precedence instilled by the way you parenthesize
an expression doesn’t alter the final result. Given a monad instance m and func-
tions f and g, the following are equivalent:

m.flatMap(f).flatMap(g) and m.flatMap(a => f(a).flatMap(g))

const f = x => [x ** 2];
const g = x => [x * 3];
Array.of(2).flatMap(f).flatMap(g); // [12]
Array.of(2).flatMap(a => f(a).flatMap(g)); // [12]

When you work with single values, the action of a map-then-flat can also be under-
stood as returning the result of the mapping function alone, thereby ignoring the out-
ermost layer. Our Monad mixin in the following listing accomplishes that task.

const Monad = {
 flatMap(f) {
 return this.map(f).get();
 },

Listing 5.10 Array examples that illustrate right identity

Listing 5.11 Monad mixin

Because the implementation of Array
in JavaScript has multiple argument
we’re not able to pass the function
name into flatMap; instead, we mus
use a function x => Array.of(x).

Ignores the extra wrapping
layer and assumes that the
type is a functor

https://github.com/fantasyland/fantasy-land#monad
https://github.com/fantasyland/fantasy-land#monad
https://github.com/fantasyland/fantasy-land#monad

129Universal contracts
 chain(f) {
 return this.flatMap(f);
 },
 bind(f) {
 return this.flatMap(f);
 }
};

This example teaches us that when we’re dealing with JavaScript arrays specifically,
flatMap is much more efficient than calling map and then flat manually. This proce-
dure is more efficient in terms of CPU cycles and memory footprint. Keep in mind
that every time you call map or flat, a new array is created, so combining them in one
fell swoop prevents the additional overhead.

For the sake of completeness, consider a similar example using Id:

const square = x => Id.of(x).map(a => a ** 2);
const times3 = x => Id.of(x).map(a => a * 3);

Method fusion
The fact that arrays behave monadically has many advantages. The law of composi-
tion is not only a core part of the behavior of functors and monads, but also a perfor-
mance enhancement for container types called method fusion, also known as shortcut
fusion. In essence, you can use compose to fuse or combine the execution of multiple
calls to map into one. Take a look at the examples used for this protocol:

['aa','bb','cc'].map(
 compose(
 toUpper,
 join,
 unique
)
);

and

['aa','bb','cc']
 .map(unique)
 .map(join)
 .map(toUpper);

Both snippets generate the same output, but the first one uses a quarter of the
space. compose avoids the multiple calls to map, each creating another copy of the
array in memory. With an array this size, the performance is negligible. But if we were
processing lots of data, method fusion could save us from running out of memory.
Libraries such as Lodash (https://lodash.com), which uses lazy evaluation, can ana-
lyze an expression that combines calls to map, filter, and others, and then fuse
them together.

You may also find
this method called
bind or chain.

https://lodash.com/

130 CHAPTER 5 Higher-kinded composition
Id.of(2)
 .flatMap(square)
 .flatMap(times3)
 .get(); // 12

Id.of(2)
 .flatMap(a => square(a).flatMap(times3))
 .get(); // 12

For this code to work, we will extend Id once more with the monadic behavior inte-
grating that mixin:

Object.assign(Id.prototype, Functor, Monad);

We can continue to optimize this example a little bit more. Earlier, I mentioned that
monads are also functors. Following that definition, it makes sense to compose the
Functor mixin into the Monad mixin. Consider the Monad definition in the next listing.

const Monad = Object.assign({}, Functor, {
 flatMap(f) {
 return this.map(f).get();
 }
 //...
});

This example shows how flexible and versatile composition is. Now you can make a
type a Functor or a full Monad with its full contract:

Object.assign(Id.prototype, Monad);

At this point, you’ve learned in a basic way how functors and monads are defined.
Although these sets of rules may feel contrived and limiting, they’re giving you
immense structure—the same structure you get from using Array#{map, filter,
reduce} instead of straight for loops and if conditions.

 Functor and monads are universal interfaces (protocols) that can plug generically
into many parts of your application. Abide by them, and any third-party code or any
other parts of your application that implement or support these types know exactly
how to work with it. A good example of how this protocol integrates with other code is

Emulating typeclasses
There’s another reason why I think mixins are a sound implementation strategy here
for these APIs: they model an equivalent concept in functional languages such as
Scala and Haskell. A typeclass allows you to define a generic interface so that any
object can conform to a certain behavior. Functor and Monad can make any type
behave monadically with little work, for example.

Listing 5.12 Defining Monad and Functor

References map
in Functor

Omits the other
method aliases

131Contextual validation with higher-order functions
the Promise object, which you’re probably familiar with. Promises are modeled, to
some extent, after functors and monads; substitute then for map or flatMap, and a lot
of these rules discussed in section 5.4 apply. We’ll look at promises more closely in
chapter 8.

 Monads are not an easy pattern to grok, but it’s important to start learning about
them now; more of these patterns are starting to emerge in modern software develop-
ment, and you don’t want to get caught wrapped in a burrito (https://youtu.be/
dkZFtimgAcM); you want to be ready.

 In practice, you will probably never need to implement Id as such in your own
applications. I did it to show you how the pattern works and how appending the
Functor and Monad mixins endow this class with powerful composable behavior. The
real bang for your buck will come from more embellished, smarter types with compu-
tational logic of their own within their map and flatMap methods. In section 5.1, I
defined a closed context and showed how it models a railway-driven approach to data
processing. With the basics behind us, we’re going to kick things up a notch and cre-
ate our own ADT to implement contextual validation.

5.5 Contextual validation with higher-order functions
An ADT is nothing more than an immutable composite data structure that contains
other types. Most ADT in practice implement the monad contract, much like the Id
container.

 Before we dive in, it’s worth pointing out that an ADT is a different pattern from
an Abstract Data Type (which goes by the same acronym): a collection that should
hold objects of the same type, such as Array, Set, Stack, and Queue (although Java-
Script does not enforce this rule). An Algebraic Data Type pattern, on the other
hand, can and usually does contain different types. The Algebraic part of the name
comes from the mathematical protocol of identity, composability, and associativity
(section 5.4).

 In this section, we’ll learn about the fundamentals of ADTs and see how to use the
Functor and Monad contracts to solve contextual data validation in a composable
manner.

5.5.1 Kinds of ADTs

ADTs are more prominent in the strongly typed world, where type information makes
code more explicit and rigorous. (For more information on using types with Java-
Script, see appendix B.) But there’s still a lot we can do even without type informa-
tion. This section looks at the two most common kinds of ADTs: Record and Choice.
Both of these encapsulate some useful coding patterns.

RECORD

A record type is a composite that contains a fixed number of (usually primitive) types,
called its operands. This is similar to a database record in which the schema
describes the types it can hold and has a fixed length. Some JavaScript libraries, such

https://youtu.be/dkZFtimgAcM
https://youtu.be/dkZFtimgAcM
https://youtu.be/dkZFtimgAcM

132 CHAPTER 5 Higher-kinded composition

 left
as Immutable.js, provide a Record type that you can import and use. The most com-
mon example of a record is an immutable Pair:

const Pair = (left, right) =>
 compose(Object.seal, Object.freeze)({
 left,
 right,
 toString: () => `Pair [${left}, ${right}]`
 });

A Pair is an immutable object with a cardinality of 2 that can be used to relate two
pieces of information (of any type), such as a username and password, a public and
private key, a filename with an access mode, or even a key/value entry in a map data
structure. Pair is a generic record type of which Money, introduced in chapter 4, or a
type like Point(x, y) can be derived implementations.

 The best use of a Pair is to return two related values from a function at the same
time. Most often, a simple array literal or even a simple object literal is used to express
a rudimentary Pair. Then you can take advantage of destructuring to access each
field. You could have something like

const [id, block] = blockchain.lookUp(hash);

const {username, password} = getCredentials(user);

Unfortunately, these two approaches don’t work well because they are mutable, and
because array is generic, it doesn’t communicate any relationship among its values. A
record semantically communicates an AND relationship among its values, implying
they must exist or make sense together (such as username AND password).

 Records also go by the name of product or tuple. A pair is a 2-tuple, and a triple is
a 3-tuple, all the way to an n-tuple. JavaScript has no native tuple or record concept,
but an early proposal might bring it to JavaScript in the near future (https://github
.com/tc39/proposal-record-tuple).

5.5.2 Choices

Whereas a record enforces a logical AND, a choice represents a logical OR relation-
ship among its operands or the values it accepts. A choice is also known as a discrimi-
nated union or a sum type. Like a record, a choice type can hold multiple values, but
only one of them is used at any point in time. A simple analogy involves using Java-
Script’s null coalesce and nullish coalesce operators, respectively. Consider the simple
example in the next listing.

const hash = precomputedHash || calculateHash(data);

const hash = precomputedHash ?? calculateHash(data);

Listing 5.13 Null and nullish coalesce operators

Evaluates right side when
side contains a falsy value

Evaluates right side only
when left side is null

https://github.com/tc39/proposal-record-tuple
https://github.com/tc39/proposal-record-tuple
https://github.com/tc39/proposal-record-tuple

133Contextual validation with higher-order functions
In the case of the null coalesce operator, if precomputedHash is not a falsy value (null,
undefined, empty string, 0, or so on), this expression evaluates the left side of the ||
operator; otherwise, it evaluates to the right. I recommend that you use the nullish (or
nullary) coalesce operator (??), as it evaluates the right side only when the precomputed-
Hash is null or undefined, which is what you intend to do most of the time.

 Choice types are often used in cases that involve data checks, data validation, or
error handling. The reason is that a choice models mutually exclusive branches such
as success/failure, valid/invalid, and ok/error. These cases are simple binary (of car-
dinality 2) use cases, for which we mistakenly are tempted to abuse Booleans.

 If you have experience with TypeScript, for example, an enumeration type or a
utility type is a common way to represent an object that could be in one of multiple
states. Consider this definition:

type Color = 'Red' | 'Blue';

With minimal tooling, you could also extend JavaScript with types (appendix B) and
use enumerations the same way. Another analogy is a switch statement, which is often
used to invoke conditional logic with multiple possible states. With two cases, the logic
of a choice type would look something like this:

switch(value) {
 case A:
 // code block
 break;
 case B:
 // code block
 break;
 default:
 // code block
}

Using this structure, consider the hypothetical use case in the next listing that checks
for the validity of a certain value.

switch(isValid(value)) {
 case 'Success':
 return doWork(value);
 case 'Failure':
 logError(...);
 default:
 return getDefault();
}

You can think of a choice ADT as always keeping track of multiple mutually exclusive
states and reacting accordingly. Validating data is no different in that you can have
only one of two possible outcomes: success or failure.

Listing 5.14 Using a switch statement to perform an action based on one condition

return/break
intentionally skipped to
return default value

134 CHAPTER 5 Higher-kinded composition
5.5.3 Modeling success and failure with the Validation monad

Data validation is a common programming task, usually involving a lot of code split-
ting (if/else/switch statements) that are often duplicated and scattered in several
parts of the application. We’re all well aware that code with lots of conditionals gets
messy and difficult to abstract over, not to mention hard to read and expensive to
maintain. This section teaches you how to implement and use monads to address
this issue while keeping your code simple to read, modular, and (most important)
composable.

 Generally, when implementing an ADT, you must take two dimensions into account.
One is the kind (record or choice), and the other is the level of composability needed
(functor or monad). In this section, we will create a Validation object as a choice
type with monadic behavior so that we can compose sequences of individual validated
operations together. By the end, we’ll finish implementing the logic behind the
HasValidation mixin and use it to run validation code on every element of the block-
chain in a consistent way.

 Validation models two states that make up its computation context, Success and
Failure, as shown in figure 5.4.

We’ll allow the Success branch to apply functions (such as doWork) on the contained
value when it’s active. Indeed, this job sounds like one for map and flatMap. Other-
wise, in the event of a validation failure, we’ll skip calling the logic and propagate the
error encountered. This pattern is useful when you need to bubble up an error that
occurred during a complex sequence of operations—something that if/else and
even try/catch blocks struggle with.

 In addition, think about how many times you have written validation functions that
return Boolean. I know I have, but this is a bad habit. By returning a Validation
object from your functions, you’re directly forcing users to handle Success and Fail-
ure cases properly instead of testing a Boolean. Another clear benefit is that your
functions become self-documenting or, in Edsger Dijkstra’s words, “more precise.” In
JavaScript, this benefit is important because documentation is often lacking, and you
need to trace through the code to see what exceptions are being thrown or any special
error values, such as null or undefined. Acknowledging that some operations might

Validation

Success

Failure

Allows functions to run

OR

Skips functions

Figure 5.4 Structure of the Validation type. Validation offers a choice of
Success or Failure, never both.

135Contextual validation with higher-order functions
fail ahead of time is much better than having your users guess that an error, if any,
might occur when invoking a particular function. We can all agree that returning false
conveys nothing to the caller about which operation or data in question was invalid;
there’s no context.

 Finally, another good quality of validation procedures is that they fail-fast. Because
composition chains a function’s inputs and outputs, it’s pointless to have functions run
with invalid data when an error has already been discovered. Short-circuiting is sensible.

 Let’s look at a hypothetical example in blockchains that involves validating whether
a block has been tampered with. This check is easily made by recomputing a block’s
hash and checking it against its own:

const checkTampering = block =>
 block.hash === block.calculateHash()
 ? Success.of(block)
 : Failure.of('Block hash is invalid');

const block = new Block(1, '123456789', ['some data'], 1);
checkTampering(block).isSuccess; // true

block.data = ['data compromised'];
checkTampering(block).isFailure; // true

This function checks for a certain condition and returns a Success wrapper contain-
ing the correct value or a Failure object with an error message. This function doesn’t
care how the error propagates forward or how it would work as part of a longer com-
position chain; it focuses on its own task.

 Both Success and Failure branches are part of the Validation composite and
are the central abstractions that drive a series of validations to a final result or to an
error. Success and Failure are closed contexts, modeling the notion of an operation
that passes or fails as a first-class citizen of your application. The following listing uses
a class to implement this behavior.

class Validation {
 #val;
 constructor(value) {
 this.#val = value;
 if (![Success.name, Failure.name].includes(new.target.name)) {
 throw new TypeError(
 `Can't directly instantiate a Validation.
 Please use constructor Validation.of`
);
 }
 }

 get() {
 return this.#val;
 }

Listing 5.15 Parent Validation class

Value is private
and read-only

Prevents direct instantiation,
effectively making Validation
an abstract class and forcing

its behavior to be accessed
through its variant types:

Success and FailureReads the value
from the container

136 CHAPTER 5 Higher-kinded composition
 static of(value) {
 return Validation.Success(value);
 }

 static Success(a) {
 return Success.of(a);
 }

 static Failure(error) {
 return Failure.of(error);
 }

 get isSuccess() {
 return false;
 }

 get isFailure() {
 return false;
 }

 getOrElse(defaultVal) {
 return this.isSuccess ? this.#val: defaultVal;
 }

 toString() {
 return `${this.constructor.name} (${this.#val})`;
 }
}

Extending from this class are the concrete variant choices: Success and Failure. The
Success path is what we call the happy path, so there’s not much to differentiate it
from the parent. Failure overrides the behavior of some of those inherited methods,
as shown in the next listing.

class Success extends Validation {
 static of(a) {
 return new Success(a);;
 }

 get isSuccess() {
 return true;
 }
}

class Failure extends Validation {
 get isFailure() {
 return true;
 }

 static of(b) {
 return new Failure(b);
 }

Listing 5.16 Success and Failure branches of Validation

Generic type-lifting
function that returns a
new instance of Success

Queries the type of container
at runtime; set to false as
default to indicate that none
of the branches is active

Provides a generic
way to recover

Overrides the
type of container

137Contextual validation with higher-order functions
 get() {
 throw new TypeError(`Can't extract the value of a Failure`);
 }

}

It may not be immediately obvious, but given that Validation can hold only a single
value at a time (valid value or an error), it’s more memory-efficient than record types,
which store all values in the tuple.

 Now that we’ve implemented the basic pieces, let’s see them in action.

Using classes vs. objects to model ADTs
I chose to use classes to design Validation because this is what the majority of
JavaScript developers use. Nevertheless, any of the patterns covered in chapters 2
and 3 (constructor functions, OLOO, mixins) would work as well. For comparison,
here’s an OLOO version of the Validation ADT:

 const Validation = {
 init: function(value) {
 this.isSuccess = false;
 this.isFailure = false;
 this.getOrElse = defaultVal => this.isSuccess ? value :

defaultVal;
 this.toString = () => `Validation (${value})`;
 this.get = () => value;
 return this;
 }
 };

 const Success = Object.create(Validation);
 Success.of = function of(value) {
 this.init(value);
 this.isSuccess = true;
 this.toString = () => `Success (${value})`;
 return this;
 };

 const Failure = Object.create(Validation);
 Failure.of = function of(errorMsg) {
 this.init(errorMsg);
 this.get = () =>
 throw new TypeError(`Can't extract the value of a Failure`);
 this.toString = () => `Failure (${errorMsg})`;
 return this;
 };

As you can see, by not shoehorning class-based design into JavaScript, OLOO greatly
reduces the amount of complexity in the code by removing the need for special syntax
for private variables, enforcement of abstract class behavior, and all references to
class-oriented inheritance mental model (class, extends) while keeping all the
same functionality.

Calling get directly on failure is considered
to be a programming error.

138 CHAPTER 5 Higher-kinded composition
5.5.4 Composing with monads

To show this type in action, let’s refactor countBlocksInFile (started in chapter 4) to
a function that also features validation:

const countBlocksInFile = compose(
 count,
 JSON.parse,
 decode('utf8'),
 read
);

This function reads from a file to a binary buffer, decodes this buffer to a UTF-8
string, parses this string to an array of blocks, and finally counts it. But this function is
missing an important part: checking whether the file exists. If the file doesn’t exist,
read will throw an exception. Likewise, without a valid Buffer object, decode will
throw an exception, and so on.

 Because the critical point of inflexion is whether the file exists, we can use
Validation to abstract over this split point. Let’s refactor the read function to return
a Validation instance instead in the next listing.

const read = f =>
 fs.existsSync(f)
 ? Success.of(fs.readFileSync(f))
 : Failure.of(`File ${f} does not exist!`);

Now this code works as follows:

read('chain.txt'); // Success(<Buffer>)
read('foo.txt'); // Failure('File foo.txt does not exist!')

Executing the rest of the code is a matter of mapping each transformation to each
Success container, like any generic functor. The Functor mixin is sufficient:

Object.assign(Success.prototype, Functor);

By doing this, we get the benefit of tightly coupling the validation branches and
shared data with the loosely coupled, Lego-style extension of mixins for shared behav-
ior. With map, this code works as it did with compose due to the map/compose equiva-
lence. Once again, you see the deep impact of this ostensibly trivial equivalence:

const countBlocksInFile = f =>
 read(f)
 .map(decode('utf8'))
 .map(JSON.parse)
 .map(count);

countBlocksInFile('foo.txt'); // Success(<number>)

Listing 5.17 Creating a version of read that returns a Validation result

The conditional expression
here models the logical OR to
decide which branch to follow.

An array is useful so that you
can concatenate more than
one error message.

139Contextual validation with higher-order functions
Furthermore, it’s a common pattern for choice ADTs to map functions on one side
and skip them (no-op) on the other. Validation executes on the success branch,
which we’ll call the right side, also known as right-biased. In the previous example, we
made Success (the right side) a functor. We also need to account for the Failure
branch so that any composed operations are ignored or skipped in the event of a read
error. For this purpose, we can create a NoopFunctor mixin with the same shape as the
regular Functor, as the next listing shows.

const NoopFunctor = {
 map() {
 return this;
 }
}

Let’s assign NoopFunctor to Failure (the left side):

Object.assign(
 Failure.prototype,
 NoopFunctor
);

After we account for both case classes, the flow of execution looks like figure 5.5.
 First, let’s look at a simple example of a failure branch so that you can understand

how this object handles errors.
 Suppose that you want to use Validation to abstract over checking for null objects.

First, create the function that implements the branching logic (fromNullable):

const fromNullable = value =>
 (value === null)
 ? Failure.of('Expected non-null value')
 : Success.of(value);

This abstraction helps us apply functions to data without having to worry about whether
the data is defined, as shown in the following listing.

fromNullable('joj').map(toUpper).toString() // 'Success (JOJ)'

fromNullable(null).map(toUpper).toString()
// 'Failure (Expected non-null value)'

To showcase this type in the real world, let’s use it in our blockchain application. Vali-
dating or verifying the contents of a blockchain is such an important part of this tech-
nology that companies specialize in implementing this aspect of the protocol. We’re

Listing 5.18 Using NoopFunctor in failure cases to skip calling mapped functions

Listing 5.19 Using fromNullable to process valid strings

Because the data is left
untouched, it’s sensible to return
the same object to the caller.

Underlying implementation of map
is the NoopFunctor, which ignores
the operation when data is invalid

140 CHAPTER 5 Higher-kinded composition
implementing a much more simplified version for this book, of course. Aside from
checkTampering (as implemented in section 5.5.3) we must ensure that blocks are in
the right position in the chain (checkIndex) and that their timestamps are greater
than or equal to that of the previous one (checkTimestamp). Both simple rules look
like this:

const checkTimestamps = curry((previousBlockTimestamp, block) =>
 block.timestamp >= previousBlockTimestamp
 ? Success.of(block)
 : Failure.of(`Block timestamps out of order`)
);

const checkIndex = curry((previousBlockIndex, block) =>
 previousBlockIndex < block.index
 ? Success.of(block)
 : Failure.of(`Block out of order`)
);

We’re going to use currying to make applying these functions easier. Notice that we
defined these functions as curried functions (see chapter 4) to facilitate composing

read?

decode('utf8')

parseBlocks

count

OR

= Success(<# of blocks>)= Failure('File foo.txt
does not exist')

YesNo

no-op

no-op

no-op

Split point

Follows Yes if
read is successful

Follows No if
read errors
out, skipping
all subsequent
operations

Every function is
called with the result
from the preceding
function.

map

map

map

Figure 5.5 Detailed execution of the composition of functions mapped over a Validation type.
When the operations are successful, the container allows each operation to map over the wrapped
data; otherwise, it skips to a recovery alternative.

141Contextual validation with higher-order functions
them as a validation sequence. Because blocks are linked in a chain, to compare one
block, you need to load the previous one (after the genesis block). From any block,
this process is always simple because each block has a reference to the previous block’s
hash and a reference to the chain of which it is part, as shown in the next listing.

class Block {
 //... omitting for brevity

 isValid() {
 const {
 index: previousBlockIndex,
 timestamp: previousBlockTimestamp
 } = this.#blockchain.lookUp(this.previousHash);

 const validateTimestamps =
 checkTimestamps(previousBlockTimestamp, this);

 const validateIndex =
 checkIndex(previousBlockIndex, this);

 const validateTampering = checkTampering(this);

 return validateTimestamps.isSuccess &&
 validateIndex.isSuccess &&
 validateTampering.isSuccess;

 }
}

const ledger = new Blockchain();
let block = new Block(ledger.height() + 1, ledger.top.hash, ['some data']);
block = ledger.push(block);
block.isValid(); // true

block.data = ['data compromised'];
block.isValid(); // false

This code seems perfectly fine if we want to return a Boolean result, which lacks any
context of the running operation. The best approach here, however, is for isValid
to return a Validation object instead of a Boolean. That way, if we want to validate
the entire blockchain data structure (not one block), we can compose all the
Validation objects together, and in the event of a failure, we could report exactly
what the error is.

Listing 5.20 isValid method of Block

Uses destructuring with
variable name change

These functions
return either
Success or
Failure.

Alters the
block’s data

Validation check fails
due to tamper check

142 CHAPTER 5 Higher-kinded composition
5.5.5 Higher-kinded composition with Validation

As we did with Id in section 5.4.2, let’s bestow upon Validation the ability to compose
with other objects of the same type and form chains. For this task, we can attach the
Monad mixin, which includes Functor as well as the ability to flatMap other Validation-
returning functions. For the Success branch, we can assign the Monad mixin:

Object.assign(Success.prototype, Monad);

For Failure, we can apply the logicless NoopMonad:

const NoopMonad = {
 flatMap(f) {
 return this;
 },
 chain(f) {
 return this.flatMap(f);
 },
 bind(f) {
 return this.flatMap(f);
 }
}

Then extending Failure is similar:

Object.assign(
 Failure.prototype,
 NoopMonad
);

The next listing shows how you can type-lift a block object into Validation. Then the
ADT takes over, and all you need to do is chain the validation rules, like building a
small rules engine.

class Block {
 ...

 isValid() {
 const {
 index: previousBlockIndex,
 timestamp: previousBlockTimestamp
 } = this.#blockchain.lookUp(this.previousHash);

 return Validation.of(this)
 .flatMap(checkTimestamps(previousBlockTimestamp))
 .flatMap(checkIndex(previousBlockIndex))
 .flatMap(checkTampering);
 }
}

Listing 5.21 Block validation with flatMap

The curried form is
useful so that the
block object (the
dynamic argument)
is passed into each
call to flatMap.

143Contextual validation with higher-order functions
As you can see, this implementation looks a lot more elegant than the previous one
and serves as another good example of a hybrid OOP/FP implementation using mix-
ins. To ensure a more rigorous transition from OO to FP land, you could opt to pass a
frozen version of the object:

return Validation.of(Object.freeze(this))
 .flatMap(checkTimestamps(previousBlockTimestamp))
 .flatMap(checkIndex(previousBlockIndex))
 .flatMap(checkTampering);

A happy path run of this algorithm looks like figure 5.6.

This new version of isValid outputs a Validation result instead of a Boolean, so
using in in the Success case looks like this:

block.isValid().isSuccess; // true

If any of the checks fails, Validation will be smart about skipping the rest:

block.isValid().isFailure; // true
block.isValid().toString(); // 'Failure (Block hash is invalid)'

Perhaps you’re thinking that although this code looks more succinct, having to call
flatMap every time is a bit verbose. Why not try something more point-free? In chap-
ter 4, you learned how to create point-free function compositions with compose and
curry. You can also achieve a point-free style with monads in JavaScript. To under-
stand how this could work, first we need to implement a slightly different variation of
compose called composeM, which uses flatMap to control the flow of data.

Validation

Block

Success

Validation

Block

.flatMap(checkTimestamps) .flatMap(checkIndex) .flatMap(checkTampering)

= Success(Block)Validation.of(this)

1. Lifts this
Block object
in Validation

2. All these callback functions return
a new Validation-wrapped container that
flatMap is constantly unfolding to maintain
the same level of nesting.

3. Each step performs a different check on the Block object.

Success

Validation

Block

Success

Validation

Block

Success

Figure 5.6 Sequential application of different Validation-returning check functions composed together
with flatMap

144 CHAPTER 5 Higher-kinded composition
5.5.6 Point-free coding with monads

Point-free coding has the advantage of making complex logic much simpler to read at a
high level. To allow for point-free coding using monads, we need to build up a little
more plumbing. In section 5.3, you learned that composing two functions is equivalent
to mapping one over the other. Parting from this idea, the following is also correct:

const compose2 = (f, g) => g.map(f);

Again, you can extend this code to work with a list of functions (instead of only two)
by using reduce:

const compose = (...fns) => fns.reduce(compose2);

By a similar reasoning, a correspondence exists that allows flatMap to become the
basis of composing two monad-returning functions—in our case, Validation-returning
functions. Using code to demonstrate this correspondence follows a similar train of
thought of the buildup of compose in chapter 4 and the compose/map equivalence
(section 5.3). I’ll spare you the details for the sake of brevity and focus on what’s
important. An alternative to compose2 that works with monads, called composeM2, is
implemented like this:

const composeM2 = (f, g) => (...args) => g(...args).flatMap(f);

As you can see, this implementation is similar to the map-based implementation of
compose2. Because the functions in the pipeline are returning monad instances, flat-
Map is used to apply the function to the value and automatically flatten the container
along the way. Finally, to support more than two functions, we do a similar reduction:

const composeM = (...Ms) => Ms.reduce(composeM2);

Don’t be concerned about understanding all the details or having to implement this
code anew every time. Functional JavaScript libraries already have support for both
types of composition; one works at a higher level of abstraction than the other. The
gist is that you use compose to sequence the execution of functions that return
unwrapped (simple) values and composeM for functions that return wrapped values
(monads). That is why the former is based on map and the latter is based on flatMap.

 Now that we’ve defined composeM, let’s put it to work. composeM orchestrates and
chains the logic of each function, and Validation steers the overall result of the entire
operation. With the right guardrails in place, you can sequence complex chains of code
with automatic, built-in data validation along the way, as shown in the next listing.

class Block {
 //...

Listing 5.22 Block validation with composeM

145Contextual validation with higher-order functions
 isValid() {
 const {
 index: previousBlockIndex,
 timestamp: previousBlockTimestamp
 } = this.#blockchain.lookUp(this.previousHash);

 return composeM(
 checkTimestamps(previousBlockTimestamp),
 checkIndex(previousBlockIndex),
 checkTampering,
 Validation.of
)(Object.freeze(this));
 }
}

There’s no need to test this logic again; you can do this on your own, following the
previous examples. If you examine the structure of the composition part, you again
see that it retains its point-free nature where all function arguments (except the cur-
ried ones) are not directly specified.

 At this point, you’ve learned enough functional programming concepts that you
can start taking advantage of this paradigm in your day-to-day tasks. Monads are not a
simple concept to grok, and many books and articles teach it differently, but when you
understand that behind the scenes, it’s all about map (which you do understand from
working with arrays), things start to fall into place.

 Let’s continue with our blockchain validation scenario. To recap, unlike regular
data structures, a blockchain can’t be tampered with or altered in any way. Changing
one block would involve recalculating the hashes of all subsequent blocks in the
chain. This restriction also ensures that no one can dominate and re-create the entire
history of the chain, which prevents the infamous 51% attack, because no single entity
would be able to harness 51% of all the necessary computational power to run all
these calculations:

 Are the blocks in the right order?
 Are the timestamps in proper chronological order?
 Is the integrity of the chain intact, and does each block point to the correct pre-

vious block? (To check, we see whether the previousHash of the block equals
the hash property of the block that went before it.)

 Has the block’s data been tampered with? (To check, we recalculate the hash of
each block. If something changed inside a block, the hash of that block changes.)

 Is the length of the hash correct (using only 64-character-length hashes in this
book)?

class Block {
 ...

 isValid() {
 const {
 index: previousBlockIndex,

146 CHAPTER 5 Higher-kinded composition
 timestamp: previousBlockTimestamp
 } = this.#blockchain.lookUp(this.previousHash);

 return composeM(
 checkTampering,
 checkDifficulty,
 checkLinkage(previousBlockHash),
 checkLength(64),
 checkTimestamps(previousBlockTimestamp),
 checkIndex(previousBlockIndex),
 Validation.of
)(Object.freeze(this));
}

The code in listing 5.22 executed only three validation rules. Observe how this code
snippet shines when you scale out to many more rules. You can follow the implemen-
tation of each rule in the code accompanying this book. The thing to focus on here is
how well-structured and readable the algorithm is. You’ll never sacrifice readability if
you want to add even more rules. Point-free coding with monads truly resembles an
assembly-line-style, embedded rules engine. This trade of semicolons for commas is
the reason why monads are also called programmable commas.

 Up until now, we’ve been able to validate only a single block instance. Fortunately,
because our code is composable, we can validate any amount of objects needed.
Blockchains store billions of objects. You can imagine the work involved in validating
billions of these blocks. As you know, blocks contain transactions, which also need to
be validated. For this book, it’s simple to think of a blockchain as being a list of lists
(blocks with transactions), but in reality it’s a tree. All the elements of this tree need to
be vertically traversed and validated. A single error should cause the entire process to
halt (fail-fast).

5.5.7 Reducing complex data structures

In this section, you’ll learn that having a well-defined, composable interface allows
you to reduce complex data structures easily.

 To validate all the objects of a blockchain (the blockchain object itself, all its
blocks, and all its transactions), we’ll use the HasValidation mixin and assign it to all
the objects involved. The logic implemented by this mixin is used to traverse any
object of a blockchain and validate its structure, as shown in figure 5.7.

 HasValidation augments objects with a new API: validate. Also, HasValidation-
requires that every element of the blockchain declare an isValid method (returning
an object of type Validation, of course) that knows how to check itself. This interface
is the minimal interface required.

 isValid is in charge of implementing all the business rules pertaining to the object
in question, as you saw with Block in section 5.5.6. The algorithm uses validate recur-
sively and is designed to start verifying a blockchain from any node in the tree.

147Contextual validation with higher-order functions
Before I outline the steps, let me prepare you for the code you’ll see in listing 5.23.
Because we’re dealing with a tree-like structure, we’ll use recursion to traverse all its
nodes. The first part of the algorithm involves enumerating the object by using the
spread operator. Some built-ins are already iterable. We can enumerate all the val-
ues inside a map like this:

const map = new Map([[0, 'foo'], [1, 'bar']]);

[...map.values()]; // ['foo', 'bar'])
[...map.keys()]; // [0, 1])

With JavaScript, you can define how spread behaves in custom objects as well with a
special property type known as Symbol.iterator. You may have played with or read
code that uses symbols, which are quite powerful. I haven’t covered symbols yet or
shown how iteration works; I cover these topics in detail in chapter 7. For now, when
you see this idiom [...obj], think of it as returning an array representation of the
object, hypothetically as obj.toArray().

 Here are the main steps:

1 Enumerate the object into an array. In the case of blockchain, this step returns
an array with all its blocks. For block, it returns all its transactions.

TX
From

To

Genesis Block Block Block for every block :b

b.isValid() {

checkTampering
checkDifficulty
checkLinkage
checkLength
checkTimestamps
checkIndex

}

TX
From

To

TX
From

To

TX
From

To

TX
From

To

TX
From

To

TX
From

To

TX
From

To

for every transaction :tx
tx.isValid() {

checkTampering
checkSignature

}

Blockchainchain.isValid() {

checkHeight

}

Figure 5.7 Traversing a blockchain’s objects, starting with the Blockchain object itself and moving down to
each block’s transactions. You can think of the routine as forming a treelike structure, with the Blockchain
object itself as the root, blocks as the second-level nodes, and transactions as the leaves of the tree.

148 CHAPTER 5 Higher-kinded composition
2 Reduce the array of each object’s isValid result, starting from the object’s own
isValid.

3 Call validate on each object, and return to step 1.
4 Return Validation.Success if all elements validate; otherwise, return

Validation.Failure.

Listing 5.23 combines the techniques we’ve been learning about, such as flatMap and
reduce, to determine whether all the elements in the chain are valid. Remember from
chapter 4 that reduce is a way to think about composition, and by pairing it with
flatMap, you achieve composition of objects, not functions. At each step, the algo-
rithm spreads the object being validated (a block will return its list of transactions, for
example); then it converts the list of objects to a list of Validation objects by using
map. Finally, it uses flatMap as the reducer function to collapse the result to a single
Validation object. Recursively, all the levels are collapsed into the final validation-
Result accumulator variable.

const HasValidation = () => ({
 validate() {
 return [...this]
 .reduce((validationResult, nextItem) =>
 validationResult.flatMap(() => nextItem.validate()),
 this.isValid()
);
 }
});

Given everything that’s happening in listing 5.23, this algorithm is terse and compact.
I’ll explain it again from the point of view of a reduction now that you’ve seen the
code because recursion is hard to grok sometimes. Conceptually, you can think of val-
idating an entire data structure as somehow reducing it to a single value. That’s hap-
pening here. reduce allows you to specify a starting value: the check of the object that
starts validate. From that point on, you start composing a sequence of validation
objects, one on top of the other. Then flatMap folds all the levels to a single value as it
traverses down the tree.

 One thing that might catch your attention is the arrow function passed to flatMap.
Because we’re not interested in knowing which object is currently passing all checks,
only that it did, we throw away the input argument. Validation is doing the heavy lift-
ing of keeping track of the error details for us. If it detects an error, the underlying
type internally switches from Success to Failure, records the error, and sidesteps the
rest of the operations (flat-mapping failures on top of failures).

 The downside of listing 5.23 is that it creates an array in memory at each branch of
the blockchain. This code will not scale for real-world blockchains with billions of
objects, however. In chapter 9, we’ll address this problem with a programming model
that allows us to process infinite amounts of data.

Listing 5.23 HasValidation mixin

Invokes the object's [Symbol.iterator]
to enumerate its state through the
spread operator

Reduces the result of
all validation calls

into a single one

Begins with the result
of checking the current
object in question

149Contextual validation with higher-order functions
 Remember from chapter 3 that Blockchain, Block, and Transaction all imple-
mented this mixin. Now you know how it works. Here’s the snippet of code that
attaches this mixin to each of the main classes of our domain:

Object.assign(
 Blockchain.prototype,
 HasValidation()
);

Object.assign(
 Block.prototype,
 HasHash(['index', 'timestamp', 'previousHash', 'data']),
 HasValidation()
);

Object.assign(
 Transaction.prototype,
 HasHash(['timestamp', 'sender', 'recipient', 'funds', 'description']),
 HasSignature(['sender', 'recipient', 'funds']),
 HasValidation()
);

Now that you understand how monads work, you’ve gained a universal vocabulary that
allows you to easily integrate with any other code that understands it, including third-
party code, and compose like-shaped code

5.5.8 Third-party integration

If all the APIs we use spoke the same protocol, our job as developers would be much
easier. Luckily, the universal functor and monad interfaces are well established and
known, and are already ubiquitous in functional JavaScript libraries, but this is not the
case for all aspects of software. In this chapter, I briefly mentioned Ramda and Crocks
as being good functional libraries to use. You may have also seen, heard about, or
even used Underscore.js or Lodash. These libraries are among the most-downloaded
NPM libraries.

 Ramda, for example, speaks the language of functors and monads by also follow-
ing the fantasy-land definitions. The following listing shows how Validation integrates
seamlessly with Ramda.

const R = require('ramda');
const { chain: flatMap, map } = R;

const notZero = num => (num !== 0
 ? Success.of(num)
 : Failure.of('Number zero not allowed')
);

const notNaN = num => (!Number.isNaN(num)
 ? Success.of(num)

Listing 5.24 Integrating a custom Validation object with FP library Ramda

chain is an alias for
flatMap. Ramda calls
it chain.

150 CHAPTER 5 Higher-kinded composition
 : Failure.of('NaN')
);

const divideBy = curry((denominator, numerator) =>
 numerator / denominator
);

const safeDivideBy = denominator =>
 compose(
 map(divideBy(denominator)),
 flatMap(notZero),
 flatMap(notNaN),
 Success.of
);

const halve = safeDivideBy(2);
halve(16); // Success(8)
halve(0); // 'Failure(Number zero not allowed)'
halve(0).getOrElse(0); // 0

The function versions of map and flatMap imported from Ramda will delegate to the
object’s map and flatMap, if present. This integration is possible because we’re abiding
by the universal contracts that both require.

 Under the hood, the version of map used here is implemented slightly differently
from our implementation of map in the Functor mixin shown in listing 5.8:

const Functor = {
 map(f = identity) {
 return this.constructor.of(f(this.get()));
 }
}

General-purpose third-party libraries such as Ramda expose curried, standalone func-
tions that order arguments to facilitate composition. Those functions have a signature
like function map(fn, F), where the functor F is the object being composed and
chained with compose. We decided to use a mixin object, so in our case, F is implied
and becomes this.

 Alternatively, we could use JavaScript’s dynamic context binding capabilities to cre-
ate our own extracted forms so that we can arrive at a similar experience as with a
standalone implementation.

5.6 Higher-kinded composition with method extraction
and dynamic binding
So far, we’ve made our objects functors and monads by assigning them the proper
mixins. This isn’t the only way to use the Functor pattern. In this section, you’ll learn
how you can extract a map method as a function that you can apply to any type of func-
tor using dynamic binding.

 You’re already aware that JavaScript makes it simple to change the environment or
context that a function is bound to by using prototype methods bind, call, or apply.

Ramda delegates to
the functor’s flatMap,
if present.

Shows the default
value feature of
Validation

151Higher-kinded composition with method extraction and dynamic binding
Given the Functor mixin, we can extract the map method with a simple destructuring
assignment:

const { map } = Functor;

Using Function#call, we can call it on any functor like so:

map.call(Success.of(2), x => x * 2); // Success(4)

This example is close to a generalized function implementation of map like the one
that ships with Ramda, except with reversed arguments. Calling methods this way can
be a bit verbose, especially if you want to compose them together. Suppose that you
want to combine Success.of(2) with a function that squares its value. Let’s follow this
simple example:

map.call(map.call(Success.of(2), x => x * 2), x => x ** 2); // Success(16)

This style of writing code won’t scale, because as our logic gets more complicated, the
code gets harder to parse. Let’s try to smooth it with a simple abstraction:

const apply = curry((fn, F) => map.call(F, fn));

This higher-order function both solves the argument order and uses currying to make
composition better, which matches closely what you’d get from an external library:

apply(x => x * 2)(Success.of(2)); // Success.of(4)

Now we can compose functors without needing composeM:

compose(
 apply(x => x ** 2),
 apply(x => x * 2)
)(Success.of(2)); // Success(16)

NOTE With regard to apply, another extension to monads, known as applica-
tive monads, builds on functors to provide an interface to apply a function
directly to a container, similar to what we did here. The method name usually
is ap or apply. Applicatives are beyond the scope of this book, but you can
learn more about them at http://mng.bz/OE9o.

These improvements are good ones, but it would be nice to be able to process ADTs
fluently directly with our extracted map function without needing anything extra. A
solution to this problem is in the works, and in the spirit of having fun with JavaScript,
I will introduce you to the newly proposed bind operator (https://gitub.com/tc39/
proposal-bind-operator).

 This proposal introduces the :: native operator, which performs a this binding (as
the Function#{bind,call,apply} API would) in combination with method extraction.
It comes in two flavors: binary and unary.

https://gitub.com/tc39/proposal-bind-operator
https://gitub.com/tc39/proposal-bind-operator
https://gitub.com/tc39/proposal-bind-operator
http://mng.bz/OE9o

152 CHAPTER 5 Higher-kinded composition
 In binary form (obj :: method), the bound object is specified before the method:

Success.of(2)::map(x => x * 2); // Success(4)

Much as we do with the pipeline operator, we can now easily call a sequence of functor/
monadic transformations on an ADT:

Success.of(2)::map(x => x * 2)::map(x => x ** 2); // Success(16)

Here’s a refactored version of the Ramda code snippet from section 5.5.8 that removes
the dependency on this library:

const { flatMap } = Monad;

const safeDivideBy = denominator => numerator =>
 Success.of(numerator)
 :: flatMap(notNaN)
 :: flatMap(notZero)
 :: map(divideBy(denominator));

const halve = safeDivideBy(2);

halve(16); // Success(8)

You may also find the bind operator in unary form (::obj.method). Suppose that you
want to pass a properly bound console.log method as a callback function. You could
use ::console.log, as in

Success.of(numerator)::map(::console.log);

or as bound to method:

const MyLogger = {
 defaultLogger: ::console.log
};

Here’s another example:

class SafeIncrementor {
 constructor(by) {
 this.by = by;
 }
 inc(val) {
 if (val <= (Number.MAX_SAFE_INTEGER - this.by)) {
 return val + this.by;
 }
 return Number.MAX_SAFE_INTEGER;
 }
}

SafeIncrementor is used to safely add to an integer without risking overflow or mis-
representation. If you wanted to run this operation over an array of numbers, you

153Summary
would have to set the proper bind context so that the incrementor remembers what
this.by refers to using Function#bind:

const incrementor = new SafeIncrementor(2);

[1, 2, 3].map(incrementor.inc.bind(incrementor)); // [3, 4, 5]

With the bind operator in unary form, this code reduces to

 [1, 2, 3].map(::incrementor.inc); // [3, 4, 5]

Both options work in much the same way. The bind operator creates a bound function
to the object on the left or the right side of the operator. See appendix A for details on
enabling this feature with Babel.

 In this chapter, we explored the functor and monad patterns by writing our own
ADT. Validation is not the only ADT; many others exist. In fact, Haskell programs
execute completely wrapped in the context of an I/O monad so that you can do
simple things such as write to standard out in a side-effect-free way. ADTs are simple
yet powerful tools. They allow you to represent everyday common tasks in a compos-
able manner. After reading this chapter, you know to never use your data naked.
When you want to apply functions in a more robust way, try wrapping them inside
a container.

 In this chapter, we implemented Validation from scratch, but many ADTs are
widely used in practice. They are becoming so widespread that you can find them all
as userland libraries and frameworks. Some have even evolved into new additions to a
language. JavaScript will meet both of these cases with Promise (first a library, now a
native API) and then Observable (chapter 9). Although Promises do not abide by the
same universal interface, they behave like one, as you’ll learn in chapter 8.

 By understanding the basic concepts of ADTs, you have a stronger grasp of how
these APIs work. Composable software doesn’t involve code alone; it also involves the
platform. JavaScript’s revamped module system is the Holy Grail of composition and
the subject of chapter 6.

Summary
 Wrapping bare data inside a mappable container provides good encapsulation

and immutability.
 JavaScript provides an object-like façade for its primitive data types that preserves

their immutability.
 Array#{flat, flatMap} are two new APIs that allow you to work with multidi-

mensional arrays in a fluent, composable manner.
 map and compose have a deep semantic equivalence.
 An ADT can be classified by how many values it can support (record or choice)

and by the level of composability (functor or monad).

154 CHAPTER 5 Higher-kinded composition
 Functors are objects that implement the map interface. Monads are objects that
implement the flatMap interface. Both support a set of mathematically inspired
protocols that must be followed.

 Validation is a composite choice ADT modeling Success and Failure conditions.
 Whereas compose is used for regular function composition, composeM is used for

monadic, higher-kinded composition.
 By implementing the universal protocols of Functor and Monad, you can inte-

grate your code easily and seamlessly with third-party FP libraries.
 Use the newly proposed pipeline operator to run sequences of monadic trans-

formations in a fluent manner.

Part 3

Code

Now that you have your objects and functions in place, how and where do
you place them? Part 3 looks into how to organize the components of your appli-
cations and take advantage of separation of logic. Up until now, this task was never
easy because it required you to dive into the sea of module systems for your client-
side code, which were managed differently from modules in the backend. And if
you’re expecting any modules of shared, common logic to transition from, say,
browsers to server easily, think again. This transition wasn’t possible before, but
everything changed with JavaScript’s official, standard module system.

 Chapter 6 introduces you to JavaScript’s official module system: ECMAScript
Modules (ESM). ESM builds on the painfully learned lessons of earlier technolo-
gies with the goal of standardizing how code is imported and exported consis-
tently in both client and server environments.

 The whole purpose of using modules is to change one part of your applica-
tion without affecting another, a process also known as separation of concerns.
Chapter 7 takes this principle to heart and combines it with metaprogramming
techniques so that you can lift and shift common functionality (such as logging
and performance counters) to separate modules and then hook them into dif-
ferent parts of your application dynamically—only when and where you need
them. You’ll learn how to use symbols to create static hooks and then how to use
dynamic proxies to create dynamic, revocable (on/off) hooks.

ECMAScript Modules
Scope is like oxygen to a programmer. It’s everywhere. You often don’t even think about
it. But when it gets polluted . . . you choke.

—David Herman (Effective JavaScript)

The world of JavaScript development is changing frantically, and the part of the
language that has undergone the most change is its module system.

 In modern application development, we take the notion of modular program-
ming for granted. The practice of breaking our applications into different files and
then recombining them is already second nature to us. We don’t do these things to
avoid getting blisters on our fingers from endless scrolling; we do them so that we

This chapter covers
 Evaluating programmatic module patterns

 Reviewing Immediately Invoked Function
Expressions (IIFEs)

 Introducing the ECMAScript Module syntax and
the new .mjs extension

 Comparing dynamic and static module systems

 Using tree-shaking and dead-code elimination
157

158 CHAPTER 6 ECMAScript Modules
can reason about and evolve different parts of our applications separately without fear
of breaking others.

 You may have heard the term cognitive load used to refer to the amount of informa-
tion a person can hold at any point in time. Too much information—such as the state
of all variables, the behavior of all components involved, and all the potential side
effects—leads to cognitive overload. Computers can easily track millions of operations
or changes of states per second, but humans can’t. A scientific fact is that humans can
store around seven artifacts at the same time in short-term memory. (Think of a small
cache.) This is why we need to subdivide our code into subprograms, modules, or
functions so that we can examine each element in isolation and reduce the amount of
information we take in at the same time.

 As I said back in chapter 1, the days of modern JavaScript development are upon
us. Every major programming language must have good support for modules, but
until recently, JavaScript did not. In chapters 4 and 5, you learned about breaking
complex code into functions and reassembling them with composition. That process
was function/object-level modularization. This chapter covers modularization at the
file level, using native JavaScript keywords.

 We start with a brief overview of today’s landscape of module solutions and then
move to a discussion of JavaScript’s new official standard: ECMAScript Modules
(ESM), also known as ECMA262 Modules, which began as ECMAScript 2015 Modules.
Unlike early module systems, ESM enhances the JavaScript syntax to use static depen-
dency definitions, which has four significant benefits:

 Improves the experience of sharing code across your applications
 Makes tools such as static code analysis, dead-code elimination, and tree-shaking

much more efficient
 Unifies the module system for server as well as client, which solves the huge

problem of requiring different module systems depending on the platform
 Optimizes the way in which compilers analyze code

NOTE It’s important to mention that this book does not cover how to pack-
age JavaScript code or how to deliver it with package managers such as NPM
and Yarn. Also, because there are many JavaScript compilers, I don’t cover
any specific compiler optimizations related to ESM.

We’ll start by reviewing today’s JavaScript modules landscape so that you understand
what problem ESM addresses and why we’re fortunate to have it.

6.1 Past state of affairs
Modular programming has been a mainstream concept in other language communi-
ties for many years, but not for JavaScript. Even today, it’s challenging to manage
dependencies and build code that can run uniformly across many environments.
Keep in mind that JavaScript is in the unique position of supporting both server and
client (browser) environments, which are very different in nature.

159Past state of affairs
 If you’re developing client-side applications, it’s likely that you’ve already had to
deal with some sophisticated build tool that could take all your independent scripts
and merge them into a single bundle. At the end of the day, the application runs as
one endless file to create the illusion of modularity. To understand the motivation
behind ESM and why it’s so important, it helps to spend a little time understanding
the current state of affairs of JavaScript and modules and how we got here.

 If you’ve been writing JavaScript code for some years, you probably remember
that JavaScript faced a lot of pushback and criticism due to its lack of a proper mod-
ule system. Without a doubt, this limitation caused the greatest amount of pain to
web developers. Without modules, any decent-size codebase quickly entered a global
clash of named variables and functions. This clash was magnified when multiple devel-
opers worked on the same application. You’d be surprised how many arrays named
arr, functions named fn, and strings named str exist globally across hundreds of
thousands of lines of code, all potentially colliding in unpredictable order. Some-
thing needed to be done urgently.

 Opinions on modules for JavaScript are heated and diverse. In the past, any
attempt at normalizing it added yet another element of variability to the madness.
Over time, out of necessity, different schools of thought for a module specification
emerged. The most notable ones were Asynchronous Module Definition (AMD) and
CommonJS (CJS). Both concepts were stepping stones to the (long overdue) develop-
ment of the formal standard ECMAScript Modules (ESM) (https://github.com/nodejs/
modules). Figure 6.1 shows a brief approximate timeline of the evolution of the mod-
ule system in JavaScript.

AMD and CJS had different design goals. The latter is synchronous and used in the
server where there’s fast file I/O; the former is asynchronous and used in the browser,
where access to files is slower and travels through the internet. Although the browser
side was contested, AMD made the most progress by dramatically simplifying depen-
dency management of large-scale, client-side JavaScript applications, especially when
used in conjunction with the RequireJS (https://requirejs.org) script loader library.

1997

2009-2010Inlined scripts

2011

CommonJS

AMD

Module/transport/C

UMD

ES6 Modules

precursor of ESM

2015
ESM Modules

2019

1995

JavaScript

2009

Node.js

Later renamed

Figure 6.1 Overview of the evolution of JavaScript’s module system, from simple inline scripts in the
early browser days to official ESM. All dates are approximate.

https://github.com/nodejs/modules
https://github.com/nodejs/modules
https://github.com/nodejs/modules
https://requirejs.org/

160 CHAPTER 6 ECMAScript Modules
AMD was one reason why the Single Page Apps (SPA) architecture was possible. An
SPA contains not only layout, but also a good chunk of the business logic loaded into
the browser. Combined with Web 2.0 technologies such as AJAX, entire apps were
being put in browsers.

 Still, nothing had become standard. This lack of consensus drove the creation of
yet another proposal that tried to unify and standardize module systems. The Univer-
sal Module Definition (UMD) came to the rescue, along with a module loader API
called SystemJS (https://github.com/systemjs/systemjs), which works on client and
server. Although reading through a UMD-built module is complex and convoluted
(because it involves lots of conditional logic to support any module style and environ-
ment), this standard was a blessing because it allowed plugin and library authors to
target a single format that could run on both client and server.

 After many years of deliberation, ESM was the be-all and end-all of module systems
for JavaScript. ESM is a platform-agnostic, standardized module system for JavaScript
that works on both servers and browsers, eventually replacing CJS and all other mod-
ule formats. Currently, ESM is the official standard; all platform vendors are starting
to adopt it and all library authors are beginning to use it. Adoption will be a slow pro-
cess and one that requires all of us to help.

 Before any of these formal proposals existed, JavaScript developers were hard at
work creating amazing websites. So how were we modularizing applications back then,
and what was considered a module? To get around making everything global scripts,
developers invented clever patterns and naming schemes, and even used objects and
the scope inside functions as pseudo-namespaces to avoid name collisions in the
global context. We’ll explore these patterns in section 6.2.

6.2 Module patterns
We have multiple ways to approach modularity in JavaScript even without module
specifications. Before JavaScript had any module system, all the code lived in the
global space, which proved to be exceptionally hard to maintain. Code was separated
into different script files. Developers had to get creative to organize their code and
provide some means of abstraction over global data to create scopes that avoid name
clashes with other running scripts—and to try to make it back home for dinner every
day. JavaScript’s fundamental scoping mechanism has always been and will always be
function scope, so it made complete sense to rely on functions to create isolated
scopes of code where you could encapsulate data and behavior.

 In this section, we’ll review some of the ad hoc modular programming patterns
that arose out of sheer necessity before modules became a core part of the language:

 Object namespaces
 Immediately Invoked Function Expressions (IIFEs)
 IIFE mixins
 Factory functions

https://github.com/systemjs/systemjs

161Module patterns
These patterns are worth reviewing because they still work today and are great for
small applications and scripts, especially if you’re targeting any of the older browsers,
such as Internet Explorer 11.

6.2.1 Object namespaces

Object namespaces grew in the browser out of the need to scale out simple scripts into
full-fledged applications before tools such as AMD existed. Because browsers don’t do
any dependency management of their own, the order in which you included your files
(via <script /> tags) was important.

 Developers got into the habit of first loading any third-party libraries (jQuery, Pro-
totype, and others) that they needed and then loading the application-specific code
that depended on those libraries. The main issue was that with the exception of
iframes and web workers, scripts ran within the same global browser realm. (I’ll dis-
cuss realms briefly in chapter 7.) Without property encapsulation, a global variable, a
class, or a function in one file would collide with that of the same name loaded from a
different file. These issues were hard to debug, especially because browsers gave no
signs or warnings of any kind when collisions happened.

NOTE Now you can load asynchronously by using the async HTML 5 attri-
bute of the script tag, which makes this problem even worse.

One way to get around this problem was to create artificial namespaces under the global
object, using object literals to group your code and identify variables uniquely. In fact,
the now-discontinued Yahoo! User Interface (YUI) library for building web applications
used this pattern extensively. A class called Transaction, for example, could be defined
in many projects and libraries because it applied to myriad domains. To avoid errors
when declaring this name multiple times, you needed to define Transaction canoni-
cally. For Node.js, this definition could look something like the next listing.

global.BlockchainApp.domain.Transaction = {};

NOTE Remember that global is the implicit global object inside a Node.js
file or module, analogous to the window object in browsers.

You saw the Transaction constructor function in chapter 2, and I’ll repeat it in the next
listing, now defined under some arbitrary object namespace, which I call Blockchain-
App. The properties of this object could more or less match the static directory structure
of your application.

let BlockchainApp = global.BlockchainApp || {};
BlockchainApp.domain = {};

Listing 6.1 Defining Transaction object with a global object namespace

Listing 6.2 Using an object namespace

In the browser, you use
window instead of global.

Defines the BlockchainApp object if it doesn’t exist by querying global Defines a new (nested) object
namespace called domain
inside BlockchainApp

162 CHAPTER 6 ECMAScript Modules

The pa
of

a fun
t

immed
inv
is c
an

(discu
in se

6

BlockchainApp.domain.Transaction = (function Transaction() {

 const feePercent = 0.6;

 function precisionRound(number, precision) {
 const factor = Math.pow(10, precision);
 return Math.round(number * factor) / factor;
 }

 return {
 construct: function(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 return this;
 },
 netTotal: function() {
 return precisionRound(this.funds * feePercent, 2);
 }
 }
})();

Alternatively, you can use an inline class expression (see the next listing). Classes are
essentially functions, so this syntax should not surprise you.

let BlockchainApp = global.BlockchainApp || {};
BlockchainApp.domain = {};
BlockchainApp.domain.Transaction = class {
 #feePercent = 0.6;
 constructor(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 this.timestamp = Date.now();
 }

 static #precisionRound(number, precision) {
 const factor = Math.pow(10, precision);
 return Math.round(number * factor) / factor;
 }

 netTotal() {
 return BlockchainApp.domain.Transaction.precisionRound
 (this.funds * this.#feePercent, 2);
 }
}

With this alternative, you can instantiate a new transaction by always specifying the
canonical path to the class expression, which is meant to lessen the possibility of any
collisions from, say, some third-party banking library you decided to use:

const tx = new BlockchainApp.domain.Transaction(...);

Listing 6.3 Defining a class expression in an object namespace

ttern
using
ction
hat is
iately
oked
alled
 IIFE
ssed
ction
.2.2).

Private variables and/or
privileged functions
encapsulated inside the
function’s scope

Public variables
and/or functions
exposed to the
caller

Defines a new Transaction
class within the
BlockchainApp.domain
namespace, using a class
expression

163Module patterns
NOTE Another common technique was to use your company’s reverse URL
notation. If you worked at MyCompany, the notation would look something
like this:

const tx = new com.mycompany.BlockchainApp.domain.Transaction(...);

Classes offer great support for private data, but before classes, the most popular pat-
tern for encapsulating state was the IIFE.

6.2.2 Immediately Invoked Function Expressions (IIFEs)

Immediately Invoked Function Expressions (IIFEs), which you may already know as
the Module pattern, take advantage of JavaScript’s function scope to house variables
and functions and provide encapsulation from the outside world. As you’re probably
aware, the function is “immediately invoked” because the unnamed function (in
parentheses) is evaluated at the end, giving you the opportunity to expose what you
want and hide what you don’t, as with classes.

 Listing 6.4 demonstrates how you can create a Transaction IIFE as an object
namespace without leaking any private data. In this code snippet, all variable decla-
rations (regardless of scope modifier var, const, or let) and functions (such as
calculateHash) exist and are visible only from within this surrounding function.

(function Transaction(namespace) {

 const VERSION = '1.0';
 namespace.domain = {};

 namespace.domain.Transaction = class {
 #feePercent = 0.6;

 constructor(sender, recipient, funds = 0.0) {
 this.sender = sender;
 this.recipient = recipient;
 this.funds = Number(funds);
 this.timestamp = Date.now();
 this.transactionId = calculateHash (
 [this.sender, this.recipient, this.funds].join()
);
 }

 ...
 }

 function calculateHash(data) {
 ...
 }
})(global.BlockchainApp || (global.BlockchainApp = {}));

Listing 6.4 Using an IIFE

Private properties defined
in the module’s scope

Creates the nested
domain namespace

Public Transaction class

Has access to the
calculateHash private
method defined later

Private method.
Function definitions
automatically get
hoisted to the top
of the surrounding
function scope.

Checks whether
Blockchain exists
globally and if
necessary creates
global.BlockchainApp
as an empty object
namespace to use

164 CHAPTER 6 ECMAScript Modules
This function executes immediately upon declaration, so Transaction is created on
the spot. You can instantiate it as before:

const tx = new BlockchainApp.domain.Transaction(...);

IIFEs were among the most popular patterns before ECMAScript 2015 classes and still
continue to be used today. In fact, many developers and JavaScript purists prefer them
to classes. It’s worth pointing out that placing variables and objects in a local scope
makes the property resolution mechanism (discussed in chapter 2) faster, because
JavaScript always checks the local scope before the global. Finally, when used in con-
junction with object namespaces, IIFEs allow you to organize your modules in differ-
ent namespaces, which you’ll need to do in a medium-sized application.

 Functions are versatile, to the point where you can augment their context to
securely define mixins in your domain. Because we explored mixins in chapter 3, sec-
tion 6.2.3 explores how these legacy solutions integrate with them.

6.2.3 IIFE mixins

Remember the mixin objects we discussed and defined in chapters 3 and 4? We can
also use IIFEs to implement HasHash. To do so, we can take advantage of JavaScript’s
context-aware function operators Function#call or Function#apply to dynamically
set the object context to be extended (referred to via this) at the call site. The
enhancement process is enclosed in the function, adequately walled off from the rest
of the code.

 Listing 6.4 shows a rehash (no pun intended) of the HasHash mixin you learned
about in chapter 4. Similar to the previous techniques, we use a function to create a
private boundary around the code we want to modularize. In listing 6.5, the use of an
arrow function notation is a lot more intentional. calculateHash is an arrow function
so that this refers to the augmented object, which is the context object or environ-
ment passed to HasHash.call.

NOTE As you know, arrow functions don’t provide their own this binding;
they borrow this from their surrounding lexical context.

HasHash accepts a set of keys that identify the properties to use during the hashing
process. The last part of the next listing shows how to augment the Transaction and
Block classes created under the global BlockchainApp namespace.

const HasHash = global.HasHash || function HasHash(keys) {

 const DEFAULT_ALGO_SHA256 = 'SHA256';
 const DEFAULT_ENCODING_HEX = 'hex';

 const options = {
 algorithm: DEFAULT_ALGO_SHA256,

Listing 6.5 The HasHash mixin using an IIFE

165Module patterns
 encoding: DEFAULT_ENCODING_HEX
 };

 this.calculateHash = () => {
 const objToHash = Object.fromEntries(
 new Map(keys.map(k => [k, prop(k, this)]))
);
 return compose(
 computeCipher(options),
 assemble,
 props(keys)
)(objToHash);
 };
}

HasHash.call(
 global.BlockchainApp.domain.Transaction.prototype,
 ['timestamp', 'sender', 'recipient', 'funds']
);

HasHash.call(
 global.BlockchainApp.domain.Block.prototype,
 ['index', 'timestamp', 'previousHash', 'data']
);

6.2.4 Factory functions

A factory function is any function that always returns a new object. You saw an example
of this pattern in the implementation of Money in chapter 4. Creating objects via facto-
ries has two important benefits:

 You can skip using the new keyword during instantiation.
 You don’t have to rely on this to access instance data. Instead, you can use the

closure formed around the object to achieve data privacy.

As another example, let’s introduce a new object to our blockchain application.
BitcoinService handles the interaction of multiple pieces of the blockchain domain
with tasks such as transferring funds and mining transactions. Services are typically
stateless objects that bring together business logic orchestrating the job of multiple
entities of your domain. Because service objects don’t transport any data, being state-
less, we don’t need to worry about making them immutable. Listing 6.6 shows the
shape of the BitcoinService with a factory function.

function BitcoinService(ledger) {
 const network = new Wallet(
 Key('public.pem'),
 Key('private.pem')
);

Listing 6.6 BitcoinService object constructed via a factory function

this maps to the object’s
prototype and adds the
calculateHash method.

The hash of each
type of object
includes a differ-
ent set of keys.

Both ledger and network become part
of the returning object’s closure and
are used by all functions.

166 CHAPTER 6 ECMAScript Modules
 async function mineNewBlockIntoChain(newBlock) {

 //... omitted for now
 }

 async function minePendingTransactions(rewardAddress,
 proofOfWorkDifficulty = 2) {

 //... omitted for now
 }

 function transferFunds(walletA, walletB, funds,
 description, transferFee = 0.02) {

 //... omitted for now
 }

 function serializeLedger(delimeter = ';') {

 //... omitted for now
 }

 function calculateBalanceOfWallet(address) {

 //... omitted for now
 }

 return {
 mineNewBlockIntoChain,
 minePendingTransactions,
 calculateBalanceOfWallet,
 transferFunds,
 serializeLedger
 };
}

You can obtain a new service object and use it like this:

const service = BitcoinService(blockchain);

service.transferFunds(luke, ana, Money('B|',5),
 'Transfer 5 btc from Luke to Ana');

With the factory function approach, private data (such as network) exists only within
the function’s scope, as with an IIFE. Accessing private data is always possible from
within the new object API because it closes over that data at time of definition. In
addition, not having to rely on this allows us to pass service methods around as
higher-order functions without having to worry about any this bindings. Consider the
transferFunds API, which has the following signature:

function transferFunds(userA, userB, funds, description,
 transferFee = 0.02)

Mines a new block
into the chain. The
body of this function
is shown in chapter 8.

Mines transactions
into a new block

Transfers funds
between two users
(digital wallets)

Serializes a ledger into
a string buffer of JSON
objects separated by
the provided delimiter

167Static vs. dynamic module systems

Suppose that you want to run a batch of transfers, all with the same default transfer fee:

const transfers = [
 [luke, ana, Money('B|',5.0), 'Transfer 5 btc from Luke to Ana'],
 [ana, luke, Money('B|',2.5), 'Transfer 2.5 btc from Ana to Luke'],
 [ana, matt, Money('B|',10.0), 'Transfer 10 btc from Ana to Matthew'],
 [matt, luke, Money('B|',20.0), 'Transfer 20 btc from Matthew to Luke']
];

function runBatchTransfers(transfers, batchOperation) {
 transfers.forEach(transferData => batchOperation(...transferData))
}

You can extract the method directly from the object as a function, using destructuring
assignment, and use that method as the batch operation, as shown next.

const { transferFunds } = service;

runBatchTransfers(transfers, transferFunds);

If BitcoinService had been defined as part of a class design, you would have been forced
to set the context object explicitly, which is not straightforward, using Function#bind

runBatch(transfers, service.transferFunds.bind(service));

or the new binding operator (chapter 5):

runBatch(transfers, ::service.transferFunds);

Overall, the four techniques—object namespaces, IIFEs, IIFE mixins, and factory
functions—have a graceful, simple elegance because they use a subset of JavaScript’s
minimal canonical language. Although these patterns are still predominant in indus-
try, the downside is that we are responsible for making sure that all the modules are
defined properly and have the proper level of encapsulation and exposure. A good
module system should handle these tasks for us.

 In section 6.3, we go from programmatic patterns to language-level module sys-
tems. At a high level, these systems can be classified as static or dynamic. It’s important
to understand the difference because ESM is different from all others due to its static
syntax.

6.3 Static vs. dynamic module systems
A dynamic module system is one in which the management of dependencies and the
specification of what a module exposes and consumes is done programmatically. This
task involves writing the code yourself or using a third-party module loader. The tech-
niques discussed in section 6.2 fall into this category, so the specification and definition

Listing 6.7 Using an extracted form of transferFunds as a callback function

Passing the service method as a
higher-order function. All closed-over
data is still available and accessible
via the method’s closure.

168 CHAPTER 6 ECMAScript Modules
of a module (what it exposes and what it hides) are created in memory when the code
runs. You can do certain tricks with dynamic modules, such as enabling conditional
access to include modules or parts of a module. Examples include the CommonJS APIs,
the AMD-compatible RequireJS library, the SystemJS library, and Angular’s dependency
injection mechanism.

 Dynamic modules are quite different from a static format such as the new ESM. A
static module system, on the other hand, defines the module’s contracts by using
native language syntax—specifically, the keywords import and export. This difference
is important to understand. For starters, JavaScript has never had static module defini-
tions, which makes them uncharted territory for most developers. Also, static definitions
have certain advantages; they allow the JavaScript runtime to prefetch or preload mod-
ules and allow you to build tools to optimize the package size of your application by
removing code that will never execute.

 Table 6.1 shows loading the Transaction class via the methods discussed in sec-
tion 6.2. The most obvious difference is that dynamic module systems use the usual
JavaScript functions, whereas static systems use import and export.

How each loading call works is not important right now; what’s important is that you
see the difference in the syntax used. With ESM, instead of function calls that traverse
the file system to load new code modules, you use an import statement that abstracts
this process. The caveat is that in static systems, import statements must appear at the
top of the file. This requirement also exists in most other languages and should not be
viewed as a limitation, for good reason: making these statements static and clearly
defined at the top helps compilers and tools map the structure of the application
ahead of time. Also, you can run tools that perform better static-code analysis, dead-
code elimination, and even tree-shaking, which I’ll cover briefly in section 6.5.

 Another noticeable difference in a static module system is the type of bindings used.
In CJS, modules are plain object references. Importing an object via the require func-
tion is no different from obtaining an object from any other function call. The shape of
the object is given by the properties assigned to module.exports inside the module file.
Here’s how you would import Validation (created in chapter 5) by using CJS:

const {Success, Failure} = require('./lib/fp/data/Validation.js');

Table 6.1 Loading the Transaction class with different module systems

System Type Example

CommonJS Dynamic const Transaction =
 require('./domain/Transaction.js');

RequireJS Dynamic requirejs(['domain/Transaction.js'], Transaction => {
 //... use Transaction
});

ESM Static import Transaction from './domain/Transaction.js';

169Static vs. dynamic module systems
A more common example is importing from Node.js’s filesystem fs built-in module:

const { exists, readFileSync } = require('fs');

Conversely, ESM modules take advantage of a more native and declarative syntax.
Access to the API still looks somewhat like regular objects, but only for consistency
with the language’s mental model and to piggyback on the success of CJS’s compact
approach. Here’s the preceding example with ESM:

import { Success, Failure } from './lib/fp/data/Validation.js';

import { exists, readFileSync } from 'fs';

On the exterior, these approaches look and feel the same, but there’s a subtle differ-
ence: ESM uses immutable, live code bindings, not a regular, mutable copy of an object.
The next listing shows a simple fee calculator CJS module to illustrate this difference.

let feePercent = 0.6;

exports.feePercent = feePercent;

exports.netTotal = function(funds) {
 return precisionRound(funds * feePercent, 2);
}

exports.setFeePercent = function(newPercent) {
 feePercent = newPercent;
}

function precisionRound(number, precision) {
 const factor = Math.pow(10, precision);
 return Math.round(number * factor) / factor;
}

Pay close attention to the result of each statement in the following listing.

let { feePercent, netTotal, setFeePercent } = require('./calculator.js');

feePercent; // 0.6
netTotal(10); // 6
feePercent = 0.7;
feePercent; // 0.7
netTotal(10); // 6
setFeePercent(0.7);
netTotal(10); //7
require('./calculator.js').feePercent; // 0.6

Listing 6.8 calculator.js module defined with CJS

Listing 6.9 Using calculator.js as a CJS module

Function
is private to
the module

Resets the value of that variable
of the locally defined variable

Uses the original module’s value of 0.6

Sets the value inside the module to 0.7

New feePercent is being used

Original value
preserved

170 CHAPTER 6 ECMAScript Modules
As you can see, reassigning feePercent to 0.7 changes your local exported copy of
that reference, but not the reference inside the module, which is probably what you’d
expect. With ESM, instead of a simple variable reference, the exported properties in
ESM are connected (bound) to the properties inside the module. In the same vein,
changing an exported binding within the module itself alters the binding used out-
side somewhere else; it’s bound both ways. There are many good uses for live bind-
ings, but they can certainly lead to confusion. My recommendation is to try to avoid
reassigning to exported references at all costs. Take a look at the code sample in the
next listing.

import { feePercent, netTotal, setFeePercent } from './calculator.js';

feePercent; // 0.6
netTotal(10); // 6
feePercent = 0.7;
netTotal(10); // 6
setFeePercent(0.7);
netTotal(10); // 7
feePercent; // 0.7

As you can see, CJS and ESM have slightly different behavior. By design, most of the
differences happen behind the scenes to make ESM adoption simpler. From a practi-
cal standpoint, ESM works similarly to CJS in that nearly every file is considered to be
a module and every module has its own local scope, where you can safely store code
and data (similar to the function scope created under an IIFE). If you’ve used CJS,
ESM shouldn’t be a huge paradigm shift.

 The future of JavaScript lies with ESM, which will eventually supersede any other
module format and interoperate with existing ones. When this will happen is uncer-
tain because Node.js (for example) needs to support CJS for some time to provide
backward compatibility and allow the transition to go smoothly.

 Now, without further ado and the past behind us, let’s jump into ESM.

6.4 ESM basics
In this section, you’ll learn about the fundamentals of ESM and how it’s used in code.
Specifically, you’ll learn how to write module path identifiers, as well as the syntax
needed to expose and consume modules by using variations of the import and export
keywords.

 ESM was designed in TC39 as a declarative module system with the goal of unifying
dependency management for client and server. You can use ESM experimentally, start-
ing with Node.js 12, by activating an experimental flag (--experimental-modules)
and in Node.js 14 without a flag. Node.js treats a file with the extension .js or .mjs (sec-
tion 6.4.4) as a module.

Listing 6.10 Using calculator.js as an ESM module

Throws an error stating that
feePercent is read-only. Value
is immutable from the client.

Sets the value inside the
module to 0.7 via an API

New feePercent
is being usedfeePercent reflects

the new live value.

171ESM basics
 ESM standardizes on a single module format that draws experience from both CJS
and AMD formats. This standardization is similar to what the Universal Module Defi-
nition (https://github.com/umdjs/umd) project set out to do many years ago, with
some success. The problem is that none of these aforementioned module formats was
ever fully standardized. In ESM, you get the best of both worlds: synchronous live
binding statements as well as dynamic, asynchronous APIs. ESM also retains the terse
syntax that CJS uses, which has withstood the test of time.

 Before we dive into this topic, one important thing to keep in mind is that ESM
modules automatically enter in strict mode without you having to write it explicitly.

 A JavaScript module is nothing more than a file or directory that’s specified
remotely (browser) or from the local file system (server) with some special semantics.
ESM makes these specifiers compatible with both of these environments. Unfortu-
nately, this constraint means that we will have a less-flexible module system on the
server because we lose the extensionless specifiers that we’ve become accustomed to
on the server side. On a positive note, ESM works toward a truly universal format,
which helps in the long run with technologies such as Server-Side Rendering and
building isomorphic applications.

 First, let’s go over the syntax for importing and exporting modules, starting with
path specifiers.

6.4.1 Path specifiers

One important design goal of ESM is to remain compatible with the browser to truly
guarantee one module format for all environments. Unlike in CJS, all module specifi-
ers in ESM must be valid URIs, which means (sadly for Node.js) that there are no
extensionless specifiers or directory modules. With the exception of bare specifiers
(such as 'ramda'), if a JavaScript module file has an extension, that extension must
be explicitly added to the import specifier for it to resolve properly. (We were allowed
to omit it before.) The following listing is more in line with how regular browser
<script> includes work.

import Transaction from './Transaction.js';
import Transaction from '../Transaction.js';
import { curry } from '/lib/fp/combinators.js';
import { curry } from 'https://my.example.com/lib/fp/combinators.js';

NOTE It’s worth mentioning that in browsers, unlike Node.js, the file exten-
sion does not tell the browser how to parse a module as JavaScript code. It’s
done with the proper MIME type (text/javascript) and shows whether the
file was included with <script type='module'>, as in

<script type="module"
 src=" https://my.example.com/lib/fp/combinators.js">
</script>

Listing 6.11 Path specifiers using ESM

Valid only in browser
environments; not

supported in Node.js

https://github.com/umdjs/umd

172 CHAPTER 6 ECMAScript Modules
If you’re using a relative path, you must start with ./ or ../. The following code gen-
erates a module-not-found error (compatible with CJS). Neither of these snippets
would pass as a valid URI:

import Transaction from 'Transaction.js';
import Transaction from 'lib/fp/combinators.js';

Another drawback is that you won’t be able to perform directory imports in Node.js as
with CJS. In CJS, having an index.js or a proper package.json file in a folder lets you
perform an import of the folder implicitly without appending the index.js part of the
specifier. Because CJS was made for the server, it had smarts built in to detect and
autocomplete the index.js bit, much as web servers serve index.html from a folder by
default. Sadly, because the same rules need to apply to both client and server, this
behavior did not carry over to ESM.

 In sections 6.4.2 and 6.4.3, we jump into the two main features of ESM: exporting
and importing.

6.4.2 Exporting

The export statement is used to expose a module’s interface or API and is analogous
to module.exports in CJS. A module is defined as a single file and may contain one or
many classes and functions. By default, everything within a file is private. (Thinking of
a module file as an empty IIFE may help.) You need to declare what to expose via the
export keyword. For brevity, I won’t cover all the possible export combinations. For a
full list of possible combinations, visit http://mng.bz/YqeK. The combinations
described in the following sections are used in the sample application.

SINGLE-VALUED (DEFAULT)
So far in the book, when showing parts of the domain classes, I’ve deliberately left out
how they map to the filesystem—in other words, the import statement that was used
to obtain the class. The general convention in exporting is for classes to become mod-
ules of their own. You have options. You can export a single class in a single step

export default class Transaction {
 // ...
}

or in two steps:

class Transaction {
 // ...
}

export default Transaction;

Single-valued export is usually the preferred way of exporting code for others to con-
sume. Before Node.js had native support for classes, a class was transpiled into its own

http://mng.bz/YqeK

173ESM basics
IIFE function. Think about how data that lives outside the export declaration inside
the module file is completely hidden from the callers. The semantics are similar to
that of an IIFE, which is nice and consistent. You can imagine one big IIFE function in
which the body is your entire module code, giving you the opportunity to declare vari-
ables, functions, or other classes accessible only to the module code itself. We used
this technique in HasHash to declare top-level constants, for example:

const DEFAULT_ALGO_SHA256 = 'SHA256';
const DEFAULT_ENCODING_HEX = 'hex';

const HasHash = (
 keys,
 options = { algorithm: DEFAULT_ALGO_SHA256,
 encoding: DEFAULT_ENCODING_HEX
 }
) => ({
 // ...
});

export default HasHash;

Using the default keyword allows you to export one piece of data. You could also
export multiple values from a single module.

MULTIVALUE

A multivalue export is an elegant way to create utility modules. This is used for the val-
idation functions in Block and Transaction. Because you’ve already seen these func-
tions, I’ll show you the export syntax and omit the body of each method:

export const checkDifficulty = block => //...

export const checkLinkage = curry((previousBlockHash, block) =>
 // ...
);

export const checkGenesis = block => // ...

export const checkIndex = curry((previousBlockIndex, block) =>
 // ...
);

API modules based on multivalue exports of standalone functions have another
great benefit: they push you into writing with purity in mind. Because you never
know the context under which a function will execute, you can’t assume or rely
on any shared or closed-over state. Moreover, instead of using a factory function,
another way to create the BitcoinService object is to expose individual, pure func-
tions that declare all the data they need up front as function arguments. Instead of
inheriting ledger and network from the function’s closure, you need to make them
actual arguments:

174 CHAPTER 6 ECMAScript Modules
export async function mineNewBlockIntoChain(ledger, newBlock) {
 //...
},

export async function minePendingTransactions(ledger, network,
 rewardAddress, proofOfWorkDifficulty = 2) {
 //...
},

export function transferFunds(ledger, network,
 walletA, walletB, funds, description) {
 //...
}

PROXYING

A module can export and bypass the bindings of another module, acting as a proxy.
You can accomplish this task by using the export ... from statement. In our case, we
can use this statement to group all the individual domain modules (including Block
and Transaction) in a single module file, called domain.js:

export { default as Block } from './domain/Block.js'
export { default as Transaction } from './domain/Transaction.js'
export { default as Blockchain } from './domain/Blockchain.js'

Unlike with import, you can export at any line of your module. No rules force the
placement.

 On the flip side, exported code is consumed by clients or other modules through
the import statement.

6.4.3 Importing

To consume an API, you must import the desired functionality, which you can do as a
whole or in pieces. You have many ways to import from a module and can find a com-
plete reference guide at http://mn.bz/Gx4R. The following sections describe some of
the most common techniques.

SINGLE-VALUE IMPORT

To import a single object from a default export, you can use

import Block from './Block.js';

This is the simplest case, but you can also request components of a module.

MULTIVALUE IMPORT

You can break out pieces of a single module. The next listing shows how to do a mul-
tivalue import.

http://mn.bz/Gx4R

175ESM basics
import { checkIndex, checkLinkage } from './block/validations.js';

Notice that although the code snippet in listing 6.12 suggests that destructuring is
occurring, as used with CJS, it’s not. Following are the main differences:

 Imports are always connected with their exports (live bindings), whereas
destructuring creates a local copy of the object. Because CJS imports a copy of
the object, a destructure is a copy of a copy.

 You can’t perform a nested destructure within an import statement. The follow-
ing code won’t work:

import {foo: {bar}} from './foo.js';

 The syntax for property renaming (aliasing) is different, as shown in the next
listing.

// CJS
const { foo: newFoo } = require('./foo.js');

// ESM
import {foo as newFoo} from './foo.js';

You can also compose a multivalued exported API into a single object namespace by
using a wildcard (alias) import:

import * as ValidationsUtil from './shared/validations.js';

ValidationsUtil.checkTampering(...);

USING A PACKAGE MANAGER (NPM)
As with native modules, importing third-party modules with ESM is done via a bare
path, with no path separators or extensions. As expected, the package name needs to
match the directory name inside node_modules. Then the entry point or module to
load is determined by the main property in its accompanying package.json. Here’s
an example:

import { map } from 'rxjs/operators';

DYNAMIC IMPORTING

If you’ve been coding in Node.js for a while, you’re probably used to loading modules
conditionally with CJS. Unlike ESM, which requires dependencies to be declared at
the beginning of the file, CJS allows you to require modules from anywhere. One use

Listing 6.12 Multivalue import of validation.js

Listing 6.13 Property renaming in CJS and ESM

The curly braces indicate that we’re
reaching into the module.

CJS: Renames foo to newFoo

ESM: Does not rename but creates
an alias called newFoo pointing to
the bound foo property

176 CHAPTER 6 ECMAScript Modules
case where this happens a lot in the wild is the notion of using a module containing
global settings or feature flags to roll out new code to your customers slowly. The fol-
lowing listing shows an example.

const useNewAlgorithm = FeatureFlags.check('USE_NEW_ALGORITHM', false);

let { computeBalance } = require('./wallet/compute_balance.js');

if (useNewAlgorithm) {
 computeBalance =
 require('./wallet/compute_balance2.js').computeBalance;
}

return computeBalance(...);

Depending on the status of the global USE_NEW_ALGORITHM setting, the application
may decide to use the traditional compute_balance module or begin using a new one.
This technique looks handy, but the first time a library or file is required, the Java-
Script runtime needs to interrupt its process to access the filesystem. Because modules
are singleton, this situation would happen only the first time a library is loaded. After-
ward, the modules are cached locally (a behavior that both ESM and CJS support). Sim-
ilarly, the second require statement blocks the main thread to access the filesystem
before caching the module.

 In the spirit of nonblocking code, filesystem access should be done asynchro-
nously. The ESM specification corrects for this problem and offers a callable version
of import that is asynchronous, based on promises, and aligned with loading code
inside the browser. The import function fetches, instantiates, and evaluates all the
requested module’s dependencies and returns a namespace object whose default
property references the requested module’s (export) default API, as well as proper-
ties that match the module’s other exports. We’ll get back to asynchronous features of
JavaScript in chapter 8, but I’ll show you how import works now as it pertains to the
module system. Refactoring the code in listing 6.14 looks like this:

const useNewAlgorithm = FeatureFlags.check('USE_NEW_ALGORITHM', false);

let computeBalanceModule = await import(
 './ domain/wallet/compute_balance.js'
);

if (useNewAlgorithm) {
 computeBalanceModule = await
 import('./domain/wallet/compute_balance2.js');
}

const {computeBalance} = computeBalanceModule;

return computeBalance(...);

Listing 6.14 Loading modules dynamically with CJS

177ESM basics
By the way, this code snippet uses a feature known as top-level-await, which is sup-
ported only in ESM. You’ll learn more about this feature in chapter 8. The basic prem-
ise is that you can use await directly to trigger an asynchronous action (loading a
script in this case) without having to write an async function explicitly.

 Another important part of the ESM specification is the introduction of a new
extension: .mjs.

6.4.4 A new extension in town

To instruct Node.js to load modules by using ESM, you have two options:

 You can set the type field of package.json to "module". This option works by
dynamically looking up the package.json nearest to your given .js file, starting
with the current directory, followed by its parent, and so on. If JavaScript is
unable to determine the type, CJS is used.

 Use the new file extension (.mjs) to identify JavaScript module files. This exten-
sion will be helpful during the transitional period of moving to ESM. By the
same token, .cjs files will force the use of CommonJS.

Package and library authors are encouraged to provide a type field in their pack-
age.json files to make their code clearer and better documented. Also, modern brows-
ers support <script type='module'> to match this new behavior.

 Although many people have deemed the .mjs extension to be unattractive, it has
precedent. React uses .jsx to declare HTML components, for example, and we’ve
all used .json as a convention to store plain-text JSON data. Browsers don’t pay
much attention to the file extension; they care mostly about the MIME type (text/
javascript for executable scripts or application/json for data imports). I view
.mjs as being a transitional route before JavaScript applications catch up to ESM;
then .js will prevail.

 Nevertheless, here are some of the concrete benefits of using .mjs:

 There are no problems with backward compatibility. Because the extension is
new, enforcing certain properties from the start (such as mandatory strict mode
on all modules) is simple.

 The extension helps with deprecating non-browser-friendly module environ-
ment variables such as __dirname, __filename, module, and exports. Also, you
will not be able to use require on files with an .mjs extension, or vice versa.
(Use import on .cjs files.)

 The new extension communicates purpose, which is a clear departure from the
existing module formats (AMD, CJS, and UMD).

 No additional instructions or parsing (so no performance penalty) are needed
for the compiler to treat and prepare/optimize a JavaScript file for modules.

 There is special processing of module files. You can now use module-scoped
metaproperties such as import.meta, for example. Currently, this object con-
tains only the URL or full path of the module, but more functionality can be

178 CHAPTER 6 ECMAScript Modules
added later. The url property will supersede the global __dirname and __file-
name globals. The example in the next listing uses import.meta.

console.log(import.meta);

// { url: "file:///home/user/../src/blockchain/domain/Transaction.js" }

 Tooling experience is improved. IDEs can be more intuitive when it comes to
things like refactoring, syntax highlighting, code completion, and visualization.
Static code analyzers and linters can give you better heuristics and guidance.

Supporting this new extension and phasing out the existing module systems won’t
happen overnight. Millions of packages and lots of tools need to start this process.
When ESM begins to trickle in with new packages and old packages get updated, we’ll
be able to reap the benefits of ESM. These benefits extend to much more than code.
Section 6.5 describes how tools can take advantage of the static nature of this module
format.

6.5 Benefits of ESM for tooling
ESM’s static, declarative structure has many benefits. The one obvious benefit is good
IDE support for static code checking. Other important benefits include dead-code
elimination and tree-shaking, faster property lookups, and type-friendliness, all dis-
cussed in the following sections.

6.5.1 Dead-code elimination and tree-shaking

In simple terms, dead code is code that could never run through any paths of your code.
Tools can identify dead code by closely examining the static structure of the code and
tracing through the possible execution paths. The most obvious form is code that’s
commented out. Naturally, it’s pointless to send that code across the network to the
browser or to a remote Node.js server, so transpilers and build tools typically strip it
out. You may also find dead code in the unreachable lines that appear after a func-
tion’s return statement. This situation sometimes happens in code that relies on auto-
matic semicolon insertion (http://mng.bz/QmDj). Other, less obvious cases include
unused local variables and function calls whose results are never used elsewhere.

 On the server, the module system is a reflection of the filesystem. On the browser,
the situation is not quite the same, but ESM aims to close this gap. For large SPAs, you
need a bundling/build strategy. Instead of requesting thousands of small files (each
file a module) over the wire, it makes sense to bundle them at build time (and while
you’re at it, compress them) into a single payload.

 I don’t cover build tools such as Browserify, Webpack, and Rollup in this book, but
I highly recommend that you research them all and pick the best tool for your project.
Build tools are essential parts of coding with JavaScript. The central job of these tools

Listing 6.15 Printing the contents of import.meta

Inside Transaction.js

http://mng.bz/QmDj

179Benefits of ESM for tooling
is to map the entire dependency tree to one or two entry points (index.js, main.js,
app.js, and so on). Build tools are smart at detecting whole modules or parts of a mod-
ule that are never used and then ignoring them. Hence, unused modules down the
dependency tree are virtually considered to be dead and dropped by shaking the tree.
Aside from reducing cognitive load, modularizing your code as much as possible
instead of packing everything into a single file is good practice.

 ESM’s static structure imposes restrictions that simplify tree-shaking:

 You can import modules only at the top level, never inside a conditional.
 You can’t use variables or functions in import statements.

A build tool can rely on the matching sets of export and import statements to map
out all unused modules and remove them as shown in figure 6.2.

Without these guarantees, eliminating unused parts would be complex. Going back
to CJS, for example, you can require modules dynamically and sprinkle these calls
anywhere in the code, making it harder to figure out what to remove and what to
keep.

 Furthermore, with ESM, when you’re looking at the bundled code generated,
depending on the tool, you might see a comment like this when removing the foo
module:

// unused export foo

A good tip is to design your modules as loosely coupled and internally cohesive as
possible to facilitate analyzing your code. Some build tools even have additional
support to identify when a function is pure and its result is not used and then can

Build toolApplication code app.js

Framework Library

Tree-shaking bundler
automatically
removes references
unused functions.

While building dependency
tree, selectively detect
entire modules to remove
from your own application
or any third-party libraries
and frameworks.

Starts from
application
entry point

Application

function function function function function function function

X XX
X

Figure 6.2 Bundler tools can use the static structure of your application to achieve tree-shaking by
identifying any unused modules of code and removing them from the packaged application file.

180 CHAPTER 6 ECMAScript Modules
safely remove that call, which is a nice benefit of coding with a functional style.
Recall from chapter 4 that pure functions have no side effects or use of shared state,
so a pure function whose result is not used does not contribute anything to your
application. Detecting whether a function is pure and free of side effects is not an
easy problem to solve, so you can help the tooling by writing a bit of metadata in
front of pure calls:

/*#__PURE__*/checkTampering(...)

You can run certain plugins that support this notation as part of your build process.
One example is the library Terser (https://github.com/terser-js/terser), which looks
for these PURE pragmas and determines whether to classify them as dead code based
on whether the result of the function is used.

 The call to checkTampering made in Block is a pure function, for example. It’s
part of the validation logic as we discussed in chapter 5. Here it is again, annotated
with the pure metacomments:

class Block {
 ...

 isValid() {
 const {
 index: previousBlockIndex,
 timestamp: previousBlockTimestamp
 } = this.#blockchain.lookUp(this.previousHash);

 return composeM(
 /*#__PURE__*/checkTampering,
 /*#__PURE__*/checkDifficulty,
 /*#__PURE__*/checkLinkage(previousBlockHash),
 /*#__PURE__*/checkLength(64),
 /*#__PURE__*/checkTimestamps(previousBlockTimestamp),
 /*#__PURE__*/checkIndex(previousBlockIndex),
 Validation.of
)(Object.freeze(this));
}

If we move checkTampering out of the composition, Terser can easily find it and mark it
for elimination—this is possible because of the guarantees that a pure function gives you.

 ESM also has faster property lookups from imported code.

6.5.2 Faster property lookups

Another advantage of using a static structure involves calling properties on the
imported module. In CJS, the require API returns a regular JavaScript object in
which every function call goes through the standard JavaScript property resolution
process (described in chapter 2):

https://github.com/terser-js/terser

181Summary
const lib = require('fs');

fs.readFile(...);

Although this technique keeps the mental model consistent, it’s slower than ESM.
ESM’s static structure allows the JavaScript runtime to look ahead and statically resolve a
named property lookup. This process happens internally, and the code looks much
the same:

import * as fs from 'fs';

fs.readFile(...);

In addition, knowing the static structure of a module allows IDEs to provide useful
hints that can check whether a named property exists or is misspelled. This benefit
has always been present in statically typed languages.

6.5.3 Type-friendliness

JavaScript could be ready for a possible optional type system down the (long) road.
ESM is paving the way, because static type checking can be done only when type
definitions are known statically ahead of time. We already have reference implemen-
tations in TypeScript or even an extension library such as Flow. Some proposals
include types for number, string, and symbol, different-size int and floats, and
new concepts such as enum and any. Although typing information is light years away,
there’s some consensus about what it could look like. For more information, see
appendix B.

 So far, I’ve covered enough of the ESM syntax to get you started. But because ESM
is a big addition to the language, I skipped many syntactical and technical details that
you should become familiar with before making the leap. The ESM specification also
supports a programmatic loader API that you can use to configure how modules are
resolved and loaded, for example. For more information, visit https://nodejs.org/
api/esm.html.

 In JavaScript, imported modules behave like objects, and you can pass them
around like variables. You can refer to this notion as “module as data.” This congru-
ence is important because in chapter 7, we enter the realm of metaprogramming.

Summary
 You can use patterns such as object and function namespaces, as well as IIFEs,

to enable modularity in JavaScript without the need for any module system.
 A dynamic module system uses third-party or native libraries to manage depen-

dencies at runtime. A static module system takes advantage of new language
syntax and can be used to optimize dependency management at compile time.

https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html

182 CHAPTER 6 ECMAScript Modules
 ESM is a static module system worked on by the TC39 task group with the aim
of unifying the module needs of both client and server JavaScript environ-
ments, as well as replacing all existing module formats.

 ESM offers many benefits, such as dead-code elimination, tree-shaking, faster
property lookup, variable checking, and compatibility with a (possible) future
type system.

 A distinctive part of ESM is the introduction of a new file extension, .mjs, so
that compilers can enhance JavaScript files behaving as modules.

Hooked on
metaprogramming
A program's text is just one representation of the program. Programs are not text. . . .
We need a different way to store and work with our programs.

—Sergey Dmitriev, president and co-founder of JetBrains

Imagine a company like Intel that builds CPU chips. To automate a lot of the repet-
itive tasks, the company programs robots to build chips—a task that we call program-
ming. Then, to scale to higher industry demands, it programs factories that build
robots that build chips—a task that we call metaprogramming.

This chapter covers
 Applying cross-functional behavior with

metaprogramming and reflection

 Using symbols to create interoperability between
different realms in your application

 Augmenting JavaScript’s internals with symbols

 Understanding the basics of the Proxy/Reflect APIs

 Enhancing the execution of methods with
decorators

 Performing leaner error handling with the throw
expressions proposal
183

184 CHAPTER 7 Hooked on metaprogramming
 I hope that by now, you’re hooked on JavaScript. I know I am. As a byproduct of all
the topics we’ve covered throughout our journey, we’ve uncovered some interesting
dualities. One of these dualities is “functions as data” (chapter 4): the idea of express-
ing an eventual value as an execution of some function. We took that concept to
another level in chapter 6 with “modules as data,” referring to JavaScript’s nature of
reifying a module as a bound object that you can pass around as data to other parts of
your application.

 In this chapter, I’m introducing another duality: “code as data.” This duality refers
to the idea of metaprogramming: using code to automate code or in some way modify
or alter the behavior of code. As it does for companies like Intel, metaprogramming
has many applications, such as automating repetitive tasks or dynamically inserting
code to handle orthogonal design issues such as logging, tracing, and tracking perfor-
mance metrics, to name a few.

 This chapter starts with the Symbol primitive data type, showing how you can use it
to guide the flow of execution and influence low-level system operations such as how
an object gets spread or iterated over, or what happens when an object appears next
to some mathematical symbol. JavaScript gives you a few controls to tweak the way that
this data type works. You’ll learn that you can use JavaScript symbols in many ways to
define special object properties, as well as inject static hooks.

 Metaprogramming is also deeply related to dynamic concepts such as reflection
and introspection, which happen when a computer program treats/observes its own
instruction set as raw runtime data. In this regard, you’ll use the Proxy and Reflect
JavaScript APIs to change the runtime behavior of your code by hooking into the
dynamic structure of objects and functions. Think about a time when you needed to
add performance timers or trace logs around your functions to measure or trace
their execution, but then had to live with that code forever. Proxies are great for
enhancing and augmenting objects with pluggable behavior in a modular way with-
out cluttering the source code. The Proxy and Reflect APIs are more frequently
used in framework or library development, but you’ll learn how to take advantage of
them in your own code.

 Before you get hooked on these features, let’s begin with some simple examples of
metaprogramming that occur in day-to-day coding.

7.1 Common uses of metaprogramming in JavaScript
When talking about code as data in the context of JavaScript, people might immediately
relate it to writing code inside code or using variables to concatenate and/or replace
code statements. The next listing shows the types of things you could do with eval.

eval(
 `
 const add = (x, y) => x + y;
 const r = add(3, 4);

Listing 7.1 Simple example that uses eval

185Common uses of metaprogramming in JavaScript
 console.log(r);
 `
);

In strict mode, eval expects code in the form of a raw string literal (data as code) and
executes it in its own environment. Alarms should be going off in your head at this
moment. You can imagine that eval can be an extremely dangerous and insecure
operation, arguably considered to be unnecessary these days.

 Another example of data as code is JavaScript Object Notation (JSON) text, which
is a string representation of code that can be directly understood as an object in the
language. In fact, with ECMAScript Modules (ESM), you can directly import a JSON
file as code without needing to do any special parsing, as follows:

import libConfig from './mylib/package.json';

Also consider computed property names, which allow you to create a key from any
expression that evaluates to a string. We used this concept to support the prop and
props methods back in chapter 4. Here’s a simple example:

const propName = 'foo';
const identity = x => x;

const obj = {
 bar: 10,
 [identity(propName)]: 20
};

obj.foo; // 20

Metaprogramming also occurs when introspecting the structure of an object. The
most important use case is JavaScript’s own duck typing, in which the “type” of an
object is determined solely by its shape with methods such as Object.getOwnProperty-
Names, Object.getPrototypeOf, Object.getOwnPropertyDescriptors, and Object
.getOwnPropertySymbols. Here’s a simple example:

const proto = {
 foo: 'bar',
 baz: function() {
 return 'baz';
 },
 [Symbol('private')]: 'privateData'
};

const obj = Object.create(proto);
obj.qux = 'qux';

Object.getOwnPropertyNames(obj); // ['qux']

Object.getPrototypeOf(obj);
// { foo: 'bar', baz: [Function: baz], [Symbol(private)]: 'privateData' }

Prints 7 to
the console

186 CHAPTER 7 Hooked on metaprogramming
Object.getOwnPropertyDescriptors(obj);
// {
// qux: {
// value: 'qux',
// writable: true,
// enumerable: true,
// configurable: true
// }
//}

Object.getOwnPropertySymbols(proto); // [Symbol(private)]

Even functions, as other objects, have some limited awareness of their own shape and
contents. You can see this awareness when you use Function#toString to print the
string representing the function’s signature and body:

add.toString(); // '(x, y) => x + y'

You could potentially pass this text representation to a parser that can understand
what the function does and act accordingly, or even inject more instructions into it if
need be.

 A more useful property of functions is Function#length. Consider the way that we
implemented the curry function combinator in chapter 4, using length to figure out
the number of arguments with which the curried function is declared and determine
how many inner functions to evaluate partially.

NOTE Because JavaScript makes it simple to use data as code, JavaScript has
some qualities of a homoiconic language. This topic is interesting to research
on your own, if you like. A homoiconic language mirrors the syntax of code as
the syntax of data. Lisp (List Programming) programs, for example, are writ-
ten as lists, which could be fed back into another (or the same) Lisp program.
All JSON text is considered to be valid JavaScript (https://github.com/tc39/
proposal-json-superset), but not all JavaScript code could be understood as
JSON, so it’s not a full mirror. Interestingly enough, JavaScript was inspired
by the language Scheme, which is a homoiconic Lisp dialect.

These tasks are examples of basic tasks in which some form of metacoding is present.
But with JavaScript, there is much more than meets the eye, especially when you start
to take advantage of special symbols to annotate the static structure of your code.

7.2 JavaScript symbols
Symbols are a subtle and powerful feature of the language, used mostly in library and
framework development. Define them in the correct places, and with little effort,
objects light up and take on new roles and new behavior. You can use symbols to estab-
lish behavioral contracts among objects, to keep data private and secret, and to enhance
the way that the JavaScript runtime treats objects. Before we dive into all those topics,
let’s spend some time understanding what they are and how to create them.

https://github.com/tc39/proposal-json-superset
https://github.com/tc39/proposal-json-superset
https://github.com/tc39/proposal-json-superset

187JavaScript symbols
 The first thing to know is that unlike any new API, a Symbol is a true built-in primi-
tive data type (like number, string, or Boolean).

typeof Symbol('My Symbol'); // 'symbol'

A Symbol represents a dynamic, anonymous, unique value. Unlike number or string,
symbols have no literal syntax, and you can never serialize them into a string. They fol-
low the function factory pattern (like Money), which means that you don’t use new to
create a new one. Instead, you create a symbol by calling the Symbol function, which
generates a unique value behind the scenes. The next listing shows a snippet.

const symA = Symbol('My Symbol');
const symB = Symbol('My Symbol');

symA == symB; // false
symB.toString(); // Symbol('My Symbol')
symB.description; // 'My Symbol'

Because a symbol represents a unique value, it is used primarily as a collision-free
object property, like a dynamic string key using the computed property-name syntax
obj[symbol]. Under the hood, JavaScript maps the unique value of a symbol to a
unique object key, which you can retrieve only if you possess the symbol reference.
The following listing shows some simple use cases.

const obj = {};
const symFoo = Symbol('foo');

obj['foo'] = 'bar';
obj[symFoo] = 'baz';

obj.foo; // 'bar'
obj[symFoo]; // 'baz'
obj[Symbol('foo')] !== 'baz'; // true

By design, symbols are not discoverable by conventional means. So iterating over an
object with for..in, for..of, Object.keys, or Object.getOwnPropertyNames won’t
work, mostly for backward-compatibility reasons. The only way is through introspec-
tion by explicitly calling Object.getOwnPropertySymbols:

for(const s of Object.getOwnPropertySymbols(obj)) {
 console.log(s.toString());
}

Even then, this technique offers a “view” of each symbol. Without the actual symbol
reference, you still can’t access the property value. By contrast, symbol references are

Listing 7.2 Basic use of symbols

Listing 7.3 Using symbols as property keys

Because symbols hide their unique value,
you can provide an optional description,
which is used only for debugging and
logging purposes. This string doesn’t
factor into the underlying unique value
or into the lookup process.

Adds property foo

Adds a property with a
symbol described as foo

foo and Symbol('foo')
map to different keys.

You can’t refer to Symbol('foo'),
which would create a new symbol.

188 CHAPTER 7 Hooked on metaprogramming
copied over when you spread an object and use Object.assign. The difference is sub-
tle but important. Unlike how other primitives are copied by value, the clone of obj
copies not the value, but the symbol reference itself—the same symbol, not a copy.
Take a look:

const clone = {...obj};

obj[symFoo] === clone[symFoo]; // true

As discussed in chapter 3, these operations rely on the enumerable data descriptor to
be set to true. If you want more privacy, you could set this descriptor to false by using
Object.defineProperty.

 At this point, we have not dealt with specific uses of symbols—only the basics.
Before we look at some interesting examples, it is important to understand how and
where symbols are created.

7.3 Symbol registries
Understanding registries will help you understand how and where symbols are created
and used. When a symbol is created, it generates a new, unique, and opaque value
inside the JavaScript runtime. These values are automatically added to different regis-
tries—local or global, depending on how the symbol is created. With the Symbol con-
structor, you target the local registry, and with static methods like Symbol.for, you
target the global registry, which is accessible across realms.

 It helps to think of a registry as being a map data structure in memory that allows
you to retrieve objects by means of a key, much like JavaScript’s own Map. Let’s begin
with the local registry.

7.3.1 Local registry

To target the local registry, you call the factory function:

const symFoo = Symbol('foo');

This function adds the value generated from Symbol('foo') to the local registry,
whether you create this symbol from a global variable scope or from within a module.
Remember that you can access and use a symbol only when you possess the variable to
reference it. If you declare symFoo inside a module (or a function), the variable is visi-
ble only within that module’s (or function’s) scope, and callers can access it only if
you export symFoo from your module (or return it from your function). Nevertheless,
in all these cases, the local registry is being used.

 The next listing shows an example of creating a local symbol and exporting the
binding from a module.

189Symbol registries
export const sym = Symbol('Local registry – module scope');

...

import { sym } from './someModule.js';

global.sym = Symbol('Local registry – global scope');
global.sym.toString(); // 'Symbol(Local registry – global scope)'
sym.toString(); // 'Symbol(Local registry – module scope)'

Section 7.3.2 shows how the global registry comes into play.

7.3.2 Global registry

The global registry is an internal structure available across the entire runtime. The
Symbol API exposes static methods that interact with this registry, such as looking up
symbols with Symbol.keyFor. Any symbols created in the local registry will not be
accessible with this API. Check out the code in the following listing.

const symFoo = Symbol('foo');
global.symFoo = Symbol('foo');
Symbol.keyFor(symFoo); // undefined
Symbol.keyFor(global.symFoo); // undefined

This code may seem to be rather unintuitive at first. Accessing the local registry didn’t
require special APIs. You treated the symbol variables as you would any other. But
when you want to use the runtime-wide registry to share symbols across many parts of
your application, you need the special APIs.

 The static methods Symbol.keyFor and Symbol.for are designed to interact with
the global symbol registry that lives inside the JavaScript runtime. The next listing
shows how we can tweak the snippet of code in listing 7.5 to target this registry.

export const globalSym = Symbol.for('GlobalSymbol');

...

import { globalSym } from './someModule.js';

const symFoo = Symbol.for('foo');
Symbol.keyFor(symFoo); // 'foo'
Symbol.keyFor(globalSym); // 'GlobalSymbol'

Listing 7.4 Exporting/importing a reference to a Symbol object

Listing 7.5 Local symbols not accessible with the global registry

Listing 7.6 Interacting with the global registry

In someModule.js

sym and global.sym
point to two different
variables.

Uses local registry

Can’t find either one

A globally
registered symbol
in someModule.js

A globally registered
symbol in current scope

Both keys found

190 CHAPTER 7 Hooked on metaprogramming
Global symbols have the additional quality of transcending code realms. You may not
be familiar with this term. Here’s how the ECMAScript specification describes a realm:

Before it is evaluated, all ECMAScript code must be associated with a realm.
Conceptually, a realm consists of a set of intrinsic objects, an ECMAScript global
environment, all of the ECMAScript code that is loaded within the scope of that global
environment, and other associated state and resources.

In other words, a realm is the environment (set of variables and resources) associated
with a script running in the browser, a module, an iframe, or even a worker script.
Each module runs in its own realm; each iframe has its own window and its own realm;
and unlike local symbols, global symbols are accessible across these realms, as depicted
in figure 7.1.

As shown in listing 7.6, you can create these symbols by using Symbol.for(key). If key
isn’t in the registry yet, JavaScript creates a new symbol and files it globally under that
key. Then you can look it up with Symbol.keyFor(key) anywhere else in your applica-
tion. If the symbol has not yet been defined in the global registry, the API returns
undefined.

 Now that you understand how symbols work, section 7.4 shows some practical
applications for them.

7.4 Practical application of symbols
Symbols have many practical applications. In the following sections, we’ll discuss using
them to implement hidden properties and make objects interoperate with other parts
of your application.

7.4.1 Hidden properties

Symbols provide a different way to attach properties to an object (data or functions)
because these property keys are guaranteed to be conflict-free, collision-free, and unique
in the runtime. This doesn’t mean you should use them to key all your properties,

moduleA.js moduleB.js

Realm

Symbol('local')

Symbol.for(‘global’)

The Symbol constructor
uses the local registry
for storing symbols.

Symbol.for uses the global
registry for storing symbols.

Realm

Symbol('local')

Figure 7.1 Scope of the local and global registries

191Practical application of symbols
however, because the access rules for symbols, as discussed in section 7.3, make it
inconvenient to pull them out.

 For this reason, it was thought that symbols could be used to emulate private proper-
ties because users would need access to the symbol reference itself, which you can con-
trol (hide) inside the module or class in question, as the next listing shows.

const _count = Symbol('count');

class Counter {
 constructor(count) {
 Object.defineProperty(this, _count, {
 enumerable: false,
 writable: true
 });
 this[_count] = count;
 }
 inc(by = 1) {
 return this[_count] += by;
 }
 dec(by = 1) {
 return this[_count] -= by;
 }
}

Outside this class, there’s no way to access the internal count property:

const counter = new Counter(1);
counter._count; // undefined
counter.count; // undefined
counter[Symbol('count')]; // undefined
counter[Symbol.for('count')]; // undefined

Unfortunately, this solution has a drawback: symbols are easily discovered via reflective
APIs such as Reflect.ownKeys and Object.getOwnPropertySymbols. Hence, they are
not truly private. Instead of using symbols for private access, why not use them to
expose access and aid the interoperability among different realms of your code (aka
different modules)? This use is much better for them.

 Having a way to establish some cross-realm set of properties is analogous to what inter-
faces do for statically typed, class-based language (appendix B). In other words, symbols
can be used to create contracts of interoperability among other parts of the code.

7.4.2 Interoperability

As an example, a third-party library could use a symbol to which objects could refer
and adhere to a certain convention imposed by the library. Symbols are ideal for
interoperable metadata values. Back in chapter 2, you learned that setting up your
own prototype logic is an error-prone process. Here’s one of the issues again:

Listing 7.7 Using symbols to implement private, hidden properties

This value would never be
exported and, thus, is kept
private within the module.

Uses Object.defineProperty
to make internal property
nonenumerable

Increases/decreases the object’s
internal count property by a
specified amount

192 CHAPTER 7 Hooked on metaprogramming
function HashTransaction(name, sender, recipient) {
 Transaction.call(this, sender, recipient);
 this.name = name;
}

HashTransaction.prototype = Object.create(Transaction);

Remember that the issue was forgetting to use the prototype property of Transaction.
It should have been Object.create(Transaction.prototype). Otherwise, creating a
new instance resulted in a weird and confusing error:

 TypeError: Cannot assign to read only property 'name' of object
 '[object Object]'

This error occurred because the code was attempting to alter the nonwritable Function
.name property. Before symbols existed, you had to use normal properties to represent
all metadata, such as the name of the function in this case. A much better alternative
would have been to use a non-writable symbol so that adding a name property to your
functions would have never caused a collision. With a symbol, a function’s name could be
set as follows:

HashTransaction[Symbol('name')] = 'HashTransaction';

Symbols can make objects more extensible by preventing the code from accidentally
breaking API contracts or the internal workings of an object. If every object in Java-
Script had a Symbol('name') property, for example, any object’s toString could eas-
ily use it in a consistent manner to enhance its own string representation, especially in
stack traces of obfuscated code. (In section 7.5, you’ll learn about a well-known sym-
bol that performs this task.)

 Furthermore, library authors could use symbols to force their users to adhere to
conventions imposed by the library. The following sections present a couple of practi-
cal examples extracted from the blockchain application.

CONTROL PROTOCOLS

Let’s look at an example that uses symbols to define a control protocol. As you know, a
protocol is a convention (contract) that defines some behavior in the language. This
behavior needs to be unique and must never clash with any other language feature.
Symbols fit in nicely for this kind of task.

 The example that we’re about to discuss comes directly from our blockchain appli-
cation. This concept is known as proof-of-work.

 The “mining” or proof-of-work process of Bitcoin for obtaining a new block could
be rather expensive in terms of energy use. Although the algorithm is simple to under-
stand, it’s time-consuming to run even with today’s computing capabilities. The puzzle
involves finding a block’s cryptographic hash value that fulfils certain conditions. The
hash value should be hard to find but easy to verify. The only condition we’ll imple-
ment is that the computed hash string must start with an arbitrary number of leading
zeroes, given by the block.difficulty property.

193Practical application of symbols

R
t

The next listing shows the proof-of-work function and also introduces a new proposal,
throw expressions (https://github.com/tc39/proposal-throw-expressions), that will
make error handling code leaner.

function proofOfWork(block =
 throw new Error('Provide a non-null block object!')) {
 const hashPrefix = ''.padStart(block ?.difficulty ?? 2, '0');
 do {
 block.nonce += 1;
 block.hash = block.calculateHash();
 } while (!block.hash.toString().startsWith(hashPrefix));
 return block;
}

Before we discuss the algorithm, let’s spend a little bit of time talking about throw
expressions as used in listing 7.8. A throw expression can be assigned like a value or
an expression (function). Without it, the only way to throw exceptions in place of a
default argument would be to wrap the exception inside a function. In other words,
you would need to create a block context ({}) somewhere else in which throw is
allowed. With this new feature, throwing an exception works like a first-class artifact,
like any other object, and significantly cuts the amount of typing required. You will be
able to throw exceptions in many ways, including parameter initializing (as used
here); one-line arrow functions, conditionals, and switch statements; and even evalua-
tion of logical operators, all without requiring a block scope. See appendix A for
details on enabling this feature.

 Listing 7.8 is a brute-force algorithm, as most proof-of-work functions are. proof-
OfWork will loop and compute the block’s hash until it starts with the given hashPrefix,
created from a string of zeroes of size block.difficulty. Naturally, the higher the
difficulty value, the harder it is to find that hash. In the real world, the miner that

Why is proof of work important?
For some asset to acquire value, it needs to be both scarce and hard to extract or
obtain. The value of a resource also follows the rules of supply and demand. Oil and
petroleum acquire value, for example, because they’re nonrenewable resources and
expensive to extract. The process is the same for gold, silver, and diamonds, which
require expensive mining processes. Similarly, bitcoin is capped at around 21 million
as of this writing, which looks like a large amount but is rather scarce compared with
other forms of currency.

Listing 7.8 Proof-of work-algorithm (proof_of_work.js)

Uses a throw expression as a
default parameter to throw
an exception if the provided

block is undefined

padStart is used to fill or pad the current string with another
string and was added to JavaScript as part of the ECMAScript
2017 update. If difficulty is set to null or missing, it defaults to
using a difficulty value of 2.

Increments the nonce
at every iteration

ehashes
he block

Tests whether the new hash contains
the string of leading zeroes

https://github.com/tc39/proposal-throw-expressions

194 CHAPTER 7 Hooked on metaprogramming
solves this puzzle first cashes in the mining reward, which is how miners are incentivized
to invest and spend energy in dedicated mining infrastructure. Because a block’s data
is constant at every iteration, the hash value is always the same, so you compute a
nonce for it. (Nonce is jargon for a “number you use only once.”) You change the nonce
in a certain way to differentiate the block’s data between hash calculations. If you
recall the definition of Block, nonce is one the properties we provided to HasHash:

 Object.assign(
 Block.prototype,
 HasHash(['index', 'timestamp', 'previousHash', 'nonce', 'data']),
 HasValidation()
);

What does this have to do with symbols? Remember that a blockchain is a large, dis-
tributed protocol. At any point in time, miners can be running any version of the soft-
ware, so changes need to be made with caution and rolled out in a timely manner. To
make enhancements or even bug fixes easier to apply to large Bitcoin networks, you
must keep track of versions, and code must fork accordingly. In the real world, blocks
contain metadata that keeps track of the version of the software. The following listing
shows another part of the Block class that I omitted earlier for brevity.

const VERSION = '1.0';

class Block {
 ...

 get [Symbol.for('version')]() {
 return VERSION;
 }
}

Having each block tagged with a global version symbol allows you to preserve backward
compatibility with blocks persisted with a previous version of your blockchain software.
Symbols let you control this compatibility in a seamless and interoperable way.

 Suppose that we want to push a new release of our software that enhances proof-
OfWork to make it a bit more challenging and harder to compute. Listing 7.10 shows
the mineNewBlockIntoChain method of BitcoinService, which uses the global sym-
bol registry to read the version of the software implementing a Block to decide how to
route the logic behind proof-of-work. We can use dynamic import to load the right
proofOfWork function to use.

 Although I haven’t covered all the details of async/await yet, you should be able
to follow the next listing because I covered dynamic import in chapter 6 when han-
dling a similar use case.

Listing 7.9 Version property inside the Block class implemented as a symbol

Registers the
software version
as a global symbol

195Practical application of symbols
async function mineNewBlockIntoChain(newBlock) {
 let proofOfWorkModule;
 switch (newBlock[Symbol.for('version')]) {
 case '2.0': {
 proofOfWorkModule =
 await import('./bitcoinservice/proof_of_work2.js');
 break;
 }
 default: case '1.0':
 proofOfWorkModule =
 await import('./bitcoinservice/proof_of_work.js');
 break;
 }
 const { proofOfWork } = proofOfWorkModule;

 return ledger.push(
 await proofOfWork(newBlock)
);
}

Using a symbol here is much better than adding a regular version property to every
block, which is what you would have had to do pre-ECMAScript 2015. This technique
protects users of your API from accidentally breaking the contract by adding their
own or modifying version at runtime. The following listing shows an enhanced proof-
of-work implementation that uses a pseudorandom nonce value instead of increment-
ing it at every iteration.

function proofOfWork(block) {
 const hashPrefix = ''.padStart(block.difficulty, '0');
 do {
 block.nonce += nextNonce();
 block.hash = block.calculateHash();
 } while (!block.hash.toString().startsWith(hashPrefix));
 return block;
}

function nextNonce() {
 return randomInt(1, 10) + Date.now();
}

function randomInt(min, max) {
 return Math.floor(Math.random() * (max - min)) + min
}

In the real world, as blocks become more scarce and the difficulty parameter algo-
rithm increases, it gets harder to compute the hash. Proof-of-work is one step required
in transferring Bitcoin. In chapter 8, we’ll see the entire process involved in mining a
new block into the chain and the reward that comes with it.

Listing 7.10 Mining a new block

Listing 7.11 Enhanced proof-of-work algorithm (proof_of_work2.js)

Instead of
incrementing by 1,
increments by a
random number

196 CHAPTER 7 Hooked on metaprogramming
 Section 7.4.3 looks at another practical example of symbols, this time involving
functions.

7.4.3 Serialization

Serialization is the process of converting an object from one representation to another.
One of the most common examples is going from an object in memory to a file (serial-
ization), and from a file into memory (deserialization or hydration). Because different
objects may need to control how they’re serialized, it’s a good idea to implement a
serialization function that gives them this control.

 Years ago, Node.js tried to do a similar thing in its implementation of console
.log, checking for the inspect method on the provided object and using it if it was
available. This feature was clunky because it could easily clash with your own inspect
method that you accidentally implemented to do something else, causing console
.log to behave unexpectedly. As a result, the feature was deprecated. Had symbols
been around back then, the story might have been different.

 The next listing does things the right way, adding another global symbol property
to the Block class in charge of returning its own JSON representation.

class Block {

 ...

 [Symbol.for('toJson')]() {
 return JSON.stringify({
 index: this.index,
 previousHash: this.previousHash,
 hash: this.hash,
 timestamp: this.timestamp,
 dataCount: this.data?.length ?? 0,
 data: this.data.map(toJson),
 version: VERSION
 }
);
 }
}

This JSON representation is a tailored, summarized version of the block’s data. With
this function, any time you need JSON, you can consult this symbol from anywhere in
your application—even across realms. Serializing a blockchain to JSON uses a helper
called toJson that inspects this symbol. The following listing shows the code to serial-
ize in BitcoinService.serializeLedger.

import { buffer, join, toArray, toJson } from '~util/helpers.js';

...

Listing 7.12 Symbol(toJson) that creates a JSON representation of the object

Listing 7.13 Serializing a ledger as a list of JSON strings

Uses a global symbol so
that it can be read out
from other modules

Uses optional chaining
operator with the nullish
coalesce operators, both added
as part of the ECMAScript 2020
specification

Converts data contents by
using a toJson helper function
(shown in listing 7.14)

197Practical application of symbols

Spre
any ob

to an a
function serializeLedger(delimeter = ';') {
 return ledger |> toArray |> join(toJson, delimeter) |> buffer;
}

I’ve taken the liberty of combining many of the concepts you’ve learned in previous
chapters. The most noticeable of these concepts is breaking logic into functions and
currying those functions to make them easier to compose (or pipe). As you can see, I
used the pipeline operator to combine this logic and return the data as a raw buffer
that can be written to a file or sent over the network, effectively keeping side effects
away from the main logic. The next listing shows the code for those helper functions.

import { curry, isFunction } from './fp/combinators.js';

export const toArray = a => [...a];

export const toJson = obj => {
 return isFunction(obj[Symbol.for('toJson')])
 ? obj[Symbol.for('toJson')]()
 : JSON.stringify(obj);
}

export const join = curry((serializer, delimeter, arr)
 => arr.map(serializer).join(delimeter));

export const buffer = str => Buffer.from(str, 'utf8');

As you can see, toJson checks the object’s metaproperties first for any global JSON
transformation symbol; otherwise, it falls back to JSON.stringify on all fields. The
rest of the helper functions are ones that you’ve seen at some point and are simple
to follow.

 Recall from chapter 4 that pipe is the reverse of compose. Alternatively, you could
have written the logic in listing 7.13 this way, provided that you implemented or
imported the compose combinator function:

 return compose(
 buffer,
 join(toJson),
 toArray)(ledger);

Custom symbols such as Symbol.for('toJson') and Symbol.for('version') are
known to the entire application. This use of symbols is so far-reaching and compelling
that JavaScript ships with a set of well-known system symbols of its own, which you can
use to bend JavaScript’s runtime behavior to your desires. Section 7.5 explores these
symbols.

Listing 7.14 Helper functions used in serializing an entire blockchain object to a buffer

Uses the pipeline operator to run a sequence of functions,
assuming that the pipes feature is enabled (appendix A)

ads
ject
rray

Converts any object to a JSON
string. If the object implements
Symbol('toJson'), the code
uses that as its JSON string
representation; otherwise, it
defaults to JSON.stringify.

Helper function that
applies a serializer
function to elements
of an array and joins
the array using the
provided delimiter

Converts any string to a UTF-8 Buffer object

198 CHAPTER 7 Hooked on metaprogramming
7.5 Well-known symbols
As you can use symbols to augment some key processes in your application, you can
also use JavaScript’s well-known symbols as an introspection mechanism to hook into
core JavaScript features and create some powerful behavior. These symbols are special
and are meant to target the JavaScript runtime’s own behavior, whereas any custom
symbols you declare can only augment userland code.

 The well-known symbols are available as static properties of the Symbol API. In this
section, we’ll briefly explore

 @@toStringTag
 @@isConcatSpreadable
 @@species
 @@toPrimitive
 @@iterator

NOTE For simplicity and ease of documentation, a well-known Symbol.<name>
is often abbreviated as @@<name>. Symbol.iterator, for example, is @@iterator,
and Symbol.toPrimitive is @@toPrimitive.

7.5.1 @@toStringTag

Soon, you’ll try to log an object to the console by calling toString, only to get the
infamous (and meaningless) message '[object Object]'. Fortunately, we now have a
symbol that hooks into this behavior. JavaScript checks whether you have toString
overridden in your own object, and if you don’t, it uses Object’s toString method,
which internally hooks into a symbol called Symbol.toStringTag. I recommend add-
ing this symbol to classes or objects for which you don’t have or need toString
defined, because it will help you during debugging and troubleshooting.

 Here are a couple of variations, the first using a computed-property syntax, used
mostly in object literals, and the second using computed-getter syntax, used mostly
inside classes:

function BitcoinService(ledger) {
 //...
 return {
 [Symbol.toStringTag]: 'BitcoinService',
 mineNewBlockIntoChain,
 calculateBalanceOfWallet,
 minePendingTransactions,
 transferFunds,
 serializeLedger
 };
}

class Block {
 //...
 get [Symbol.toStringTag]() {
 return 'Block';

199Well-known symbols
 }
}

Now toString has a bit more information:

const service = BitcoinService();
service.toString(); // '[object BitcoinService]')

For objects built with classes and pseudoclassical constructors (chapter 2), to avoid
hardcoding, you could use the more general

get [Symbol.toStringTag]() {
 return this.constructor.name;
}

@@toStringTag is also used for error handling. As an example, consider adding it to
Money:

const Money = curry((currency, amount) =>
 compose(
 Object.seal,
 Object.freeze
)({
 amount,
 currency,
 //...

 [Symbol.toStringTag]: `Money(${currency} ${amount})`
 })
)

If you try to mutate Money('USD', 5), JavaScript throws the following error, using
toStringTag to enhance the error message:

TypeError: Cannot assign to read only property 'amount' of object '[object
Money(USD 5)]'

7.5.2 @@isConcatSpreadable

This symbol is used to control the internal behavior of Array#concat. What outcome
would you expect from this expression?

[a].concat([b])

Do you expect [['a'], ['b']] or ['a', 'b']? Most of the time, you’d want the latter.
And that is exactly what happens. When concatenating objects, concat determines
whether any of its arguments are “spreadable.” In other words, it tries to unpack and flat-
ten all the elements of the target object over another, using semantics similar to those of
the spread operator. Here’s a simple example that shows the effect of this operator:

const letters = ['a', 'b'];
const numbers = [1, 2];
letters.concat(numbers); // ["a", "b", 1, 2]

200 CHAPTER 7 Hooked on metaprogramming
letters[Symbol.isConcatSpreadable] = false;
letters.concat(numbers); // Array ["a", "b", Array [1, 2]]

In some cases, however, you don’t want the default behavior. Consider implementing
record types, such as a Pair, as a simple array:

class Pair extends Array {
 constructor(left, right) {
 super()
 this.push(left);
 this.push(right);
 }
}

For Pair, you would not want to spread its elements by default when concatenating
with another Pair, because then you’ll lose the proper two-element grouping:

const numbers = new Pair(1, 2);
const letters = new Pair('a', 'b');

numbers.concat(letters) // Array [1, 2, 'a', 'b']

What you want in this case is a collection of pairs. If you turn off the Symbol.isConcat-
Spreadable knob, everything works as expected:

class Pair extends Array {
 constructor(left, right) {
 super();
 this.push(left);
 this.push(right);
 }

 get [Symbol.isConcatSpreadable]() {
 return false;
 }
}

numbers.concat(letters); // Array [Array [1, 2], Array ['a', 'b']]

The symbols described so far hook into some superficial behavior; others go even
deeper into the nooks and crannies of the JavaScript APIs. Section 7.5.3 looks at
Symbol.species.

7.5.3 @@species

Symbol.species is a nice, clever artifact used to control what the constructor should
be on a resultant or derived object after operations are used on some original object.
The following sections look at two use cases for this symbol: information hiding and
documenting closure of operations.

201Well-known symbols
INFORMATION HIDING

You can use Symbol.species to avoid exposing unnecessary implementation details by
downgrading derived types to base types. Consider the simple use case in the next listing.

class EvenNumbers extends Array {
 constructor(...nums) {
 super();
 nums.filter(n => n % 2 === 0).forEach(n => this.push(n));
 }
 static get [Symbol.species]() {
 return Array;
 }
}

new EvenNumbers(1, 2, 3, 4, 5, 6); // [2, 4, 6]

At this point, this object created an instance of both EvenNumber and Array, as you’d
expect. But the fact that this data structure was constructed from EvenNumber is not
important to users of this API after it’s been initialized, because Array would be more
than adequate. With the @@species metasymbol added, after mapping over this array,
you see that the type is downgraded to Array and used thereafter for all operations
(some, every, filter), effectively hiding the original object. Here’s an example:

const result = evens.map(x => x ** 2);
result instanceof Array; // true
result instanceof EvenNumbers; // false

Aside from Array, types such as Promise support this feature, as do data structures
such as Map and Set. By default, @@species points to their default constructors:

Array[Symbol.species] === Array
Map[Symbol.species] === Map
RegExp[Symbol.species] === RegExp
Promise[Symbol.species] === Promise
Set[Symbol.species] === Set

Here’s another example, this one using promises. Suppose that after some user
action, you’d like to fire a task that starts after some period of time has elapsed. (Nor-
mally, you should not extend from built-in types, but I’ll make an exception here for
teaching purposes.) After the first deferred action runs, every subsequent action
should behave like a standard promise. Consider the DelayedPromise class shown in
the following listing.

class DelayedPromise extends Promise {
 constructor(executor, seconds = 0) {

Listing 7.15 Using @@species so that EvenNumbers becomes Array

Listing 7.16 Deriving DelayedPromise as a subclass of Promise

Excludes odd numbers from
being pushed into this array

Hides the derived class
after any mapping
operations

Creates a promise that delays its initial
execution by the provided seconds

202 CHAPTER 7 Hooked on metaprogramming
 super((resolve, reject) => {
 setTimeout(() => {
 executor(resolve, reject);
 }, seconds * 1_000);
 })
 }

 static get [Symbol.species]() {
 return Promise;
 }
}

You can wrap any asynchronous task as you would any other promise, as shown next.

const p = new DelayedPromise((resolve) => {
 resolve(10);
}, 3);

p.then(num => num ** 2)
 .then(console.log);
//Prints 100 after 3 seconds

DOCUMENTING CLOSURE OF OPERATIONS

Here’s another example in which @@species can be useful in an application, particu-
larly in the area of functional programming. Let’s circle back to the Functor mixin in
chapter 5 that implements a generic map contract:

const Functor = {
 map(f = identity) {
 return this.constructor.of(f(this.get()));
 }
}

Remember that functors have a special requirement for map: it must preserve the
structure of the type being mapped over. Array#map should return a new Array,
Validation#map should return a new Validation, and so on. You can use @@species
to guarantee and document the fact that functors close over the type that you expect—
helping preserve the species, you might say. It’s the responsibility of the implementer
to respect this symbol when it exists. Arrays use this symbol, and we can add it to
Validation as well, as shown in the following listing.

static get[Symbol.species]() {
 return this;
}

Listing 7.17 Using DelayedPromise

Listing 7.18 @@species as implemented in the Validation class

Hides the derived class so
that subsequent calls to
then are not delayed

Returns the number 10
after three seconds

Squares the eventual
number returned

Uses the bind operator to pass in a
reference to the log function of a
properly bound console object

In a static context, refers to
the surrounding class

203Well-known symbols
Then we can enhance Functor to hook into @@species before defaulting to the
object’s constructor, as shown in the next listing.

const Functor = {
 map(f = identity) {
 const C = getSpeciesConstructor(this);
 return C.of(f(this.get()));
 }
}

function getSpeciesConstructor(original) {
 if (original[Symbol.species]) {
 return original[Symbol.species]();
 }
 if (original.constructor[Symbol.species]) {
 return original.constructor[Symbol.species]();
 }
 return original.constructor;
}

This code results in

Validation.Success.of(2).map(x => x ** 2); // Success(4)

7.5.4 @@toPrimitive

This symbol gets queried by JavaScript when it converts (or coerces) some object into
a primitive value such as a string or a number—when you place an object next to a
plus sign (+) or concatenate it to a string, for example. JavaScript already has a well-
defined rule for its internal coercion algorithm (called an abstract operation) that goes
by the name ToPrimitive.

 Symbol.toPrimitive customizes this behavior. This function-valued property
accepts one parameter, hint, which could have a string value of number, string, or
default. This operation is in many ways equivalent to overriding Object#valueOf
and Object#toString (discussed in chapter 4), except for the additional hinting
capability, which allows you to be smarter about the process. In fact, both of these
methods are checked when @@toPrimitive is not defined and JavaScript needs to
coerce an object into a value that makes sense. For strings and numbers, the general
rule is as follows:

 When hint is a number, JavaScript attempts to use valueOf.
 When hint is a string, JavaScript attempts to use toString.

When implementing @@toPrimitive, we should try to stay consistent with these rules.
A classic example is the Date object. When a Date object is hinted to act as a string, its
toString representation is used. If the object is hinted as a number, its numerical
representation (seconds from the epoch) is used:

Listing 7.19 Inspecting the contents of @@species when mapping functions on functors

Looks into the species
function-valued symbol
first to decide the derived
object type

Falls back to using
constructor if no
@@species symbol
is defined

204 CHAPTER 7 Hooked on metaprogramming
const today = new Date();

'Today is: ' + today;
// Today is: Thu Oct 31 2019 14:02:29 GMT+0000 (Coordinated Universal Time)

+today; // 1572530549275

Let’s go back to our EvenNumbers example, adding this symbol to that class with an
implementation that sums all the numbers in the array when a number is requested or
creates a comma-separated-values (CSV) string representation of the array in a string
context, as shown in the next listing.

class EvenNumbers extends Array {
 constructor(...nums) {
 super();
 nums.filter(n => n % 2 === 0).forEach(n => this.push(n));
 }

 static get [Symbol.species]() {
 return Array;
 }

 [Symbol.toPrimitive](hint) {
 switch (hint) {
 case 'string':
 return `[${this.join(', ')}]`;
 case 'number':
 default:
 return this.reduce(add);
 }
 }
}

You can also think of @@toPrimitive as a means of unboxing or unfolding some con-
tainer into its primitive value. The next listing adds this metasymbol to Validation.

class Validation {
 #val;

 //...

 get() {
 return this.#val;
 }

 [Symbol.toPrimitive](hint) {
 return this.get();
 }
}

Listing 7.20 Defining @@toPrimitive in class EvenNumbers

Listing 7.21 Adding @@toPrimitive to the Validation class to extract its value

Returns a string
representation of
this array (showing
only even numbers)

Returns a single number
representation of this array by
adding up all even numbers

When a Validation instance is
in a primitive position, the
JavaScript runtime folds the
container automatically.

205Well-known symbols
Now you can use these containers with less friction in the code because JavaScript
takes care of the unboxing for you, as shown in the following listing.

'The Joy of ' + Success.of('JavaScript'); // 'The Joy of JavaScript'

function validate(input) {
 return input
 ? Success.of(input)
 : Failure.of(`Expected valid result, got: ${input}`);
}

validate(10) + 5; // 15
validate(null) + 5; // "Error: Can't extract the value of a Failure"

Value objects are also good opportunities to use this symbol. In Money, for example, we
can use this symbol to return the numerical portion directly and make math opera-
tions easier and more transparent, as the next listing shows.

const Money = curry((currency, amount) =>
 compose(
 Object.seal,
 Object.freeze
)({
 amount,
 currency,

 ...

 [Symbol.toPrimitive]: () => precisionRound(amount, 2);
 })
)

const five = Money('USD', 5);
five * 2; // 10
five + five; // 10

The last well-known symbol covered in this book, and by far the most useful, is
@@iterator.

7.5.5 @@iterator

Most class-based languages have standard libraries that support some form of an
Iterable or Enumerable interface. Classes that implement this interface must abide
by a contract that communicates how to deliver data when some collection is looped

Listing 7.22 Taking advantage of @@toPrimitive used with Validation objects

Listing 7.23 Using @@toPrimitive in Money to return its numerical portion

The plus operator causes the Validation.Succes object
to be in primitive position. It automatically unwraps
the container with its value, 10.

The plus operator causes a
Validation.Failure to wrongfully

unbox and throw an error.

Both arithmetic operators
unwrap Money objects to
perform the numerical
operation.

206 CHAPTER 7 Hooked on metaprogramming
over. JavaScript’s response is Symbol.iterator, which acts like one of these interfaces
and is used to hook into the mechanics of how an object behaves when it’s the subject
of a for...of loop, consumed by the spread operator, or even destructured.

 As you can expect, all of JavaScript’s abstract data types already implement
@@iterator, starting with arrays:

Array.prototype[Symbol.iterator](); // Object [Array Iterator] {}

Arrays are an obvious choice. What about strings? You can think of a string as being a
character array. Spread it, destructure it, or iterate over it, as the next listing shows.

[...'JoJS']; // ['J', 'o', 'J', 'S']

const [first, ...rest] = 'JoJS';
first; // 'J'
rest; // ['o', 'J', 'S']

const str = 'JoJS'[Symbol.iterator]();
str.next(); // { value: 'J', done: false }
str.next(); // { value: 'o', done: false }
str.next(); // { value: 'J', done: false }
str.next(); // { value: 'S', done: false }
str.next(); // { value: undefined, done: true }

Similarly, it makes sense that Blockchain could seamlessly deliver all blocks when it’s
put through a for loop or spread over. After all, a blockchain is a collection of blocks.
Blockchain delegates all of its block storage needs to a private instance field of Map
(chapter 3). The following listing shows the pertinent details.

class Blockchain {

 #blocks = new Map();

 constructor(genesis = createGenesisBlock()) {
 this.#blocks.set(genesis.hash, genesis);
 }

 push(newBlock) {
 this.#blocks.set(newBlock.hash, newBlock);
 return newBlock;
 }

 //...

 [Symbol.iterator]() {
 return this.blocks.values()[Symbol.iterator]();
 }
}

Listing 7.24 Enumerating a string as a character array

Listing 7.25 Using @@iterator for blockchain

Spread operator

Destructuring
the array

Manual
iteration

Delegates to the
iterator object
returned from
Map#values

207Well-known symbols
Map is also iterable, so calling values on a Map object delivers the values (without keys)
as an array, which is iterable by design, meaning we can easily have Blockchain’s
@@iterator symbol delegate to it, as listing 7.25 shows. The same is true for Block to
deliver the items contained in data, which in this case is each Transaction object, as
shown in the next listing.

class Block {

 //...
 constructor(index, previousHash, data = []) {
 this.index = index;
 this.data = data;
 this.previousHash = previousHash;
 this.timestamp = Date.now();
 this.hash = this.calculateHash();
 }

 //...

 [Symbol.iterator]() {
 return this.data[Symbol.iterator]();
 }
}

To read out all the transactions in a block, loop over it:

for (const transaction of block) {
 console.log(transaction.hash);
}

You have nothing to gain from iterating over a Transaction, which is a terminal/leaf
object in our design. So you can let JavaScript error out abruptly if a user of your API
tries to iterate over it, or you can manipulate the iterator yourself to handle this situa-
tion gracefully and silently by sending back the object {done: true}:

class Transaction {
 // ...

 [Symbol.iterator]() {
 return {
 next: () => ({ done: true })
 }
 }
}

Furthermore, @@iterator is a central part of the validation algorithm in HasValidation
that we implemented in chapter 5, which relies on traversing the entire blockchain
structure. Here’s that code again (listing 7.27).

Listing 7.26 Implementing @@iterator in Block to enumerate all transactions

Automatically delivers
transactions when a
Block object is spread
or looped over

208 CHAPTER 7 Hooked on metaprogramming
const HasValidation = () => ({
 validate() {
 return [...this]
 .reduce((validationResult, nextItem) =>
 validationResult.flatMap(() => nextItem.validate()),
 this.isValid()
);
 }
})

Now that you know that @@iterator plugs into the behavior of for..of as well as the
spread operator, you can design a more memory-friendly solution than the algorithm
in listing 7.27. As it stands, validate is creating new arrays in memory when execut-
ing: [...this]. This code won’t scale to large data structures. Instead, you can loop
over the objects inline with a more traditional for loop, as shown in the next listing.

const HasValidation = () => ({
 validate() {
 let result = model.isValid();
 for (const element of model) {
 result = validateModel(element);
 if (result.isFailure) {
 break;
 }
 }
 return result;
 }
})

You can do many things with @@iterator. Data structures that extend from or depend
on arrays are natural candidates, but you can do much more, especially when you
combine these structures with generators. A Generator is an object that is returned
from a generator function and abides by the same iterator protocol. @@iterator is a

Iterator protocol
JavaScript has a well-defined iterator protocol that communicates to the runtime what
the next value is and when iteration has reached its conclusion. The shape of that
object looks like this:

{value: <nextValue>, done: <isFinished?>}

Both iterators (and generators) in JavaScript work the same way. We’ll study genera-
tors in more depth in chapter 8 and async generators in chapter 9.

Listing 7.27 HasValidation mixin

Listing 7.28 Refactoring validate to use for loops to benefit from @@iterator

Invokes the Symbol.iterator
property of the object
being validated

Calls the internal @@iterator
property of Blockchain, Block,
and Transaction

209Well-known symbols
function-valued property, and generators can implement it elegantly. The next listing
shows a variation on a Pair object that uses a generator to yield the left and right
properties during a destructuring assignment.

const Pair = (left, right) => ({
 left,
 right,
 equals: otherPair => left === otherPair.left &&
 right === otherPair.right,
 [Symbol.iterator]: function* () {
 yield left;
 yield right;
 }
 });

const p = Pair(20, 30);
const [left, right] = p;
left; // 20
right; // 30
[...p]; // [20, 30]

Again, don’t worry too much now about how generators work behind the scenes. All
you need to understand is that calls to yield within the function are analogous to call-
ing the returned iterator object’s next method. Behind the scenes, JavaScript is taking
care of this task for you. I’ll cover this topic in more detail in chapter 8.

 To sum up the well-known symbols, here’s Pair implementing all of the symbols at
the same time, as well as our custom [Symbol.for('toJson')]:

const Pair = (left, right) => ({
 left,
 right,
 equals: otherPair => left === otherPair.left &&
 right === otherPair.right,
 [Symbol.toStringTag]: 'Pair',
 [Symbol.species]: () => Pair,
 [Symbol.iterator]: function* () {
 yield left;
 yield right;
 },
 [Symbol.toPrimitive]: hint => {
 switch (hint) {
 case 'number':
 return left + right;
 case 'string':
 return `Pair [${left}, ${right}]`;
 default:
 return [left, right];
 }
 },

Listing 7.29 Using a generator to return left and right elements of a Pair

The function* notation
identifies a generator
function.

The yield keyword is
equivalent to a return
in a regular function.

210 CHAPTER 7 Hooked on metaprogramming
 [Symbol.for('toJson')]: () => ({
 type: 'Pair',
 left,
 right
 })
 });

const p = Pair(20, 30);
+p; // 50
p.toString(); // '[object Pair]'
`${p}`; // 'Pair [20, 30]'

const p2 = p[Symbol.species]()(20, 30);
p.equals(p2); // true

Normally, you wouldn’t load objects with all possible symbols; their true power comes
from using the ones that truly affect your code globally to remove sources of duplica-
tion. These examples are for teaching purposes only.

 You can hook into many symbols other than the ones discussed in this chapter. The
following code

Object.getOwnPropertyNames(Symbol)
 .filter(p => typeof Symbol[p] === 'symbol')
 .filter(s =>
 ![
 'toStringTag',
 'isConcatSpreadable',
 'species',
 'toPrimitive',
 'iterator'
]
 .includes(s));

returns

 [
 'asyncIterator',
 'hasInstance',
 'match',
 'replace',
 'search',
 'split',
 'unscopables'
]

I’ll cover @@asyncIterator in chapter 8.
 As you can see, symbols allow you to create static hooks that you can use to apply a

fixed enhancement to the behavior of your code. But what if you need to turn things
on or off at runtime? In section 7.6, we turn our attention to other JavaScript APIs that
dynamically hook into running code.

211Dynamic introspection and weaving
7.6 Dynamic introspection and weaving
The techniques discussed so far fall under the umbrella of static introspection. You
created tokens (aka symbols) that you or the JavaScript runtime can use to change
how running code behaves. This technique, however, requires that you add symbols
directly as properties of objects. For the extended functionality that well-known sym-
bols give you, this is the only option. But when you’re considering any custom symbols,
modifying the shape of objects syntactically may seem a bit invasive. Let’s consider
another option.

 In this section, you’ll learn about a technique that involves changing the behavior
of your code externally via dynamic introspection. Along the way, you’ll learn how to
use this technique to consolidate cross-cutting logic such as logging/tracing and per-
formance, and even the implementation of smart objects.

 JavaScript makes it easy to manipulate and change the shape and structure of
objects at runtime. But special APIs allow you to hook into the event of calling a
method or accessing a property. To understand the motivation here, it helps to think
about the popular, widely used Proxy design pattern (figure 7.2).

As shown in figure 7.2, a proxy is a wrapper to another object that is being called by a
client to access the real internal object. The proxy object usurps an object’s interface
and takes full control of how it’s accessed and used. Proxies are used quite a bit to
interface network communications and filesystems, for example. Most notably, prox-
ies are used in application code to implement a caching layer or perhaps a centralized
logging system.

 Instead of requiring you to roll your own proxy code scaffolding every time, Java-
Script takes this pattern to heart and makes it first-class APIs: Proxy and Reflect.
Together, these APIs allow you to implement dynamic introspection so that you can

proxy.foo

'bar'

const target = {
foo: 'foo'

};

target.foo; //'foo'

const handler = {
get: function() {
return 'bar';

}
};

const proxy =
new Proxy(target, handler);

proxy.foo; //'bar'

[GET] trap

foo:'foo'

Figure 7.2 The Proxy pattern uses an object (proxy) to act on behalf of a target. When fetching for a property,
if it finds the property in the proxy, the code uses that property; otherwise, it consults the target object. Proxies
have lots of uses, including logging, caching, and masking.

212 CHAPTER 7 Hooked on metaprogramming
weave or inject code at runtime in a non-invasive manner. This solution is optimal
because it keeps your application separate from your injectable code. In some ways,
this solution is similar to dynamic extension via mixins (chapter 3), except that dynamic
extension occurs during object construction, whereas dynamic weaving occurs during
object use.

 In section 7.6.1, we use dynamic introspection to weave performance counters and
logging statements into important parts of the code without touching their implemen-
tation, beginning with the Proxy API.

7.6.1 Proxy objects

Proxies have many practical uses, such as interception, tracing, and profiling. A Proxy
object is one that can intercept or trap access to a target object’s properties. When an
object is being used with a get, set, or method call, JavaScript’s internal [[Get]] and
[[Set]] mechanisms are executed, respectively. You can use proxies to plant traps in
your objects that hook into these internal operations.

 Proxies enable the creation of objects with the full range of behaviors available to
host objects. In other words, they look and behave like regular objects, so unlike sym-
bols, they have no additional properties.

 The first thing to understand about proxies is the handler object, which sets up the
traps against the host object. You can intercept nearly any operation on an object and
even inherited properties.

NOTE You can apply many traps to an object. I don’t cover all traps in this
book—only the most useful ones. For a full list, visit http://mng.bz/zxlX.

Let’s start with an example that showcases a tracer proxy object to trace or log any
property and method access, beginning with the get ([[Get]]) trap:

const traceLogHandler = {
 get(target, key) {
 console.log(`${dateFormat(new Date())} [TRACE] Calling: ${key}`);
 return target[key];
 }
}

function dateFormat(date) {
 return ((date.getMonth() > 8)
 ? (date.getMonth() + 1)
 : ('0' + (date.getMonth() + 1))) + '/' +
 ((date.getDate() > 9)
 ? date.getDate()
 : ('0' + date.getDate())) + '/' + date.getFullYear();
}

As you can see, after creating the log entry, the handler allows the default behavior to
happen by returning a reference to the original property accessed by target[key]. To
see this behavior in action, consider this object:

http://mng.bz/zxlX

213Dynamic introspection and weaving
const credentials = {
 username: '@luijar',
 password: 'Som3thingR@ndom',
 login: () => {
 console.log('Logging in...');
 }
};

Creating a proxied version of this object is simple:

const credentials$Proxy = new Proxy(credentials, traceLogHandler);

The statements

credentials$Proxy.login(); // Prints 'Logging in...'
credentials$Proxy.username; // '@luijar'
credentials$Proxy.password; // 'Som3thingR@ndom'

print the following logs:

11/06/2019 [TRACE] Calling: login
11/06/2019 [TRACE] Calling: username
11/06/2019 [TRACE] Calling: password

I said before that proxies allow you to intercept anything, and I mean anything, even
symbols. So trying to log the object itself (not by calling toString) invokes certain
symbols behind the scenes. This code

console.log(credentials$Proxy);

prints

11/06/2019 [TRACE] Calling: Symbol(Symbol.toStringTag)
11/06/2019 [TRACE] Calling: Symbol(Symbol.iterator)

The dynamic weaving happens without the API objects having any knowledge of it,
which is an ideal separation of concerns. We can get a bit more creative. Suppose
that we’d like to obfuscate and hide any sensitive information (such as a password)
from being read as plain text. Consider the handler in the next listing, which traps
get and has.

const passwordObfuscatorHandler = {
 get(target, key) {
 if(key === 'password' || key === 'pwd') {
 return '\u2022'.repeat(randomInt(5, 10));
 }
 return target[key];
 },
 has(target, key) {
 if(key === 'password' || key === 'pwd') {

Listing 7.30 passwordObfuscatorHandler proxy handler

U+2022 is
Unicode for a bullet
character ().

214 CHAPTER 7 Hooked on metaprogramming
 return false;
 }
 return true;
 }
}

Now reading out a password from credentials returns the obfuscated value:

credentials$Proxy.password; // ''

And checking for the password field with the in operator invokes the has trap:

'password' in credentials$Proxy; // false

Unfortunately, you seem to have lost the tracing behavior you had earlier. Because
proxies wrap an object (and are themselves plain objects), you can apply proxies on
top of proxies. In other words, proxies compose. Composing proxies allows you to
implement progressive enhancement or decoration techniques:

const credentials$Proxy =
 new Proxy(
 new Proxy(credentials, passwordObfuscatorHandler),
 traceLogHandler);

credentials$Proxy.password; // ''
 // 11/06/2019 [TRACE] Calling: password

The FP principles that you learned in chapter 4 apply here. You can turn those
nested proxy objects into an elegant right-to-left compose pipeline. Consider this
helper function:

const weave = curry((handler, target) => new Proxy(target, handler));

weave takes a handler and waits for you to supply the host object, which can be cre-
dentials or a credential proxy. Let’s partially apply two handler functions, one for log
tracing and the other for automatic password obfuscation:

const tracer = weave(traceLogHandler);
const obfuscator = weave(passwordObfuscatorHandler);

Compose the functions in the right order to obfuscate before printing:

const credentials$Proxy = compose(tracer, obfuscator)(credentials);

credentials$Proxy.password; // ''
 // 11/06/2019 [TRACE] Calling: password

You can also use the more natural left-to-right pipe operator (provided that pipes are
enabled). See how clean and terse the code becomes?

const credentials$Proxy = credentials |> obfuscator |> tracer;

215Dynamic introspection and weaving
It’s great to see how core principles apply to all sorts of scenarios. In this case, by com-
bining metaprogramming with functional and object-oriented paradigms, we get a
best-of-breed implementation.

 In section 7.6.2, we look at the mirror API to a proxy handler: Reflect.

7.6.2 The Reflect API

Reflect is a complementary API to Proxy that you can use to invoke any interceptable
property of an object dynamically. You could invoke a function by using Reflect
.apply, for example. Arguably, you could also use the legacy parts of the language,
such as Function#{call,apply}. Reflect has a similar shape to Proxy, but it provides
a less verbose, more contextual, easier-to-understand API for these cases, which
makes Reflect a more natural and reasonable way to forward actions on behalf of
Proxy objects.

 Reflect packs the most useful internal object methods into a simple-to-use API. In
other words, all the methods provided by proxy handlers—get, set, has, and others—
are available here. You can also use Reflect to uncover other internal behavior about
objects, such as whether a property was defined or a setter operation succeeded.
You can’t get this information with regular reflective inquiries such as Object.{get-
PrototypeOf, getOwnPropertyDescriptors, and getOwnPropertySymbols}.

 One example of some internal behavior exposed by Reflect is Reflect.define-
Property, which returns a Boolean stating whether a property was created success-
fully. By contrast, Object.defineProperty merely returns the object that was passed
to the function. Reflect.defineProperty is more useful for this reason.

 The sample code in the following listing takes advantage of the Boolean result to
define a new property on an object.

const obj = {};

if(Reflect.defineProperty(obj, Symbol.for('version'), {
 value: '1.0',
 enumerable: true
})){
 console.log(obj); // { [Symbol(version)]: '1.0' }
}

Again, because Reflect’s API matches that of the proxy handler for all traps, it’s natu-
rally suitable to be the default behavior inside proxy traps. The [[Get]] trap for pass-
wordObfuscatorHandler, for example, can be refactored as such, as shown next.

const passwordObfuscatorHandler = {
 get(target, key) {
 if(key === 'password' || key === 'pwd') {

Listing 7.31 Using Reflect.defineProperty to create a property

Listing 7.32 [[Get]] trap of passwordObfuscatorHandler

Returning true means
that the property was
added successfully.

216 CHAPTER 7 Hooked on metaprogramming
 return '\u2022'.repeat(randomInt(5, 10));
 }
 return Reflect.get(target, key);
 }
}

Furthermore, this API parity means that you don’t have to declare all parameters explic-
itly every time if you don’t need to use them. Let’s clean up traceLogHandler a bit:

const traceLogHandler = {
 get(...args) {
 console.log(`${dateFormat(new Date())} [TRACE] Calling: ${args[1]}`);
 return Reflect.get(...args);
 }
}

Section 7.6.3 discusses some interesting and practical uses for this feature.

7.6.3 Additional use cases

In this section, you’ll learn about some interesting use cases for dynamic proxies in
our blockchain application, starting with a smart block that knows to rehash itself on
the fly when any of its hashed properties change. Then you’ll use proxies to measure the
performance of the blockchain validate function.

AUTOHASHED BLOCKS

Recall that a block computes its own hash upon instantiation:

const block = new Block(1, '123', []);

block.hash;
// '0632572a23d22e7e963ab4fe643af1a3a77cf11a242346352a1ad0ebc3fb0b73'

A hash value uniquely identifies a block, but it can get out of sync if some malicious
actor changes or tampers with the block data, which is why validation algorithms for
blockchain are so important. Ideally, if a block’s property value changes (a new trans-
action is added or its nonce gets incremented, for example), we should rehash it. To
implement this behavior without proxies, you would need to define setters explicitly
for all your mutable, hashed properties and call this.calculateHash when each one
changes. The properties of interest are index, timestamp, previousHash, nonce, and
data. You can imagine how much duplicated code that process would require.

 Consolidating this dynamic behavior is what proxies are all about. The ability to
implement this on/off behavior from a single place is a plus too. Let’s start by creating
the proxy handler, as the following listing shows.

const autoHashHandler = (...props) => ({
 set(hashable, key) {
 if (props.includes(key) && !isFunction(hashable[key])) {

Listing 7.33 Implementing the autoHashHandler proxy handler

Uses Reflect.get(target, key)
instead of target[key]

217Dynamic introspection and weaving

R

 Reflect.set(...arguments);
 const newHash = Reflect.apply(
 hashable['calculateHash'], hashable, []
);
 Reflect.set(hashable, 'hash', newHash);
 return true;
 }
 }
 })

In this case, we used a function to return a handler that monitors the properties we
want, as shown in the next listing.

const smartBlock = new Proxy(block,
 autoHashHandler('index', 'timestamp', 'previousHash', 'nonce', 'data')
);

smartBlock.data = ['foo'];
smartBlock.hash;
// e78720807565004265b2e90ae097d856dad7ad34ae1edd94a1edd839d54fa839

Making blocks autohashable is a nice property when you’re building your block objects,
but you want to make sure that you revoke this behavior as soon as a block gets mined
into the chain. (Checking the hash is part of validating the tamperproof nature of a
blockchain.)

MEASURING PERFORMANCE WITH REVOCABLE PROXIES

In the world of blockchains, one of the most important, time-consuming operations is
validating the entire chain data structure from genesis to the last mined block. You
can imagine the complexity of validating a ledger with millions of blocks, each with
hundreds or thousands of transactions. Capturing and monitoring the performance
of the chain’s validate method can be crucial, but you don’t want that code to litter
the application code. Also, remember that validate is an extension through the
HasValidate mixin, so adding the code there would mean measuring the validation
time not only of blockchain, but also of each block, which we don’t need. To collect
these metrics, we’ll use Node.js’ process.hrtime API. We’ll start by defining the proxy
handler in the next listing.

const perfCountHandler = (...names) => {
 return {
 get(target, key) {
 if (names.includes(key)) {
 const start = process.hrtime().bigint();
 const result = Reflect.get(target, key);
 const end = process.hrtime(start).bigint();

Listing 7.34 Using autoHashHandler to automatically rehash an object that changes

Listing 7.35 Defining the perfCountHandler proxy handler object

Executing the default set
behavior. Normally, it’s best
to stay away from using
arguments, but in this case,
arguments make the code
shorter.

eflect.apply calls
calculateHash on
the target object

being proxied.

This [[Set]] operation calls
calculateHash and updates
the block’s hash value.

Uses BigInt to
represent integers of
arbitrary precision

218 CHAPTER 7 Hooked on metaprogramming
 console.info(`Execution time took ${end - start} nanoseconds`);
 return result;
 }
 return Reflect.get(target, key);
 }
 }
}

process.hrtime is a high-resolution API that captures time in nanoseconds, using a
new ECMAScript2020 primitive type called BigInt, which can perform arbitrary preci-
sion arithmetic and prevent any issues when operating with integer values that exceed
253 – 1 (the largest value that Number can represent in JavaScript).

 We use this handler to instantiate our ledger object proxy. But because perfor-
mance counters should be switchable (on/off) at runtime, instead of a plain proxy,
we’re going to use a revocable proxy. A revocable proxy is nothing more than an object
that has a revoke method, aside from the actual proxy object:

const chain$RevocableProxy = Proxy.revocable(new Blockchain(),
 perfCountHandler('validate'));

const ledger = chain$RevocableProxy.proxy;

After a few blocks and transactions are added, at the end of calling ledger.validate,
something like this prints to the console:

Execution time took 2460802 nanoseconds

Instead of printing to the console, you can send this value to a special logger to moni-
tor your blockchain’s performance. When you’re done, call chain$RevocableProxy
.revoke to switch off and remove all traps from your target blockchain object. Let me
remind you that the wonderful thing about this feature is the fact that whether it’s
switched on or off, objects never have knowledge that any traps were installed in the
first place.

 A technique known as method decorators centers on the same idea. In section 7.7,
we’ll see how to use JavaScript’s Proxy API to emulate this technique.

7.7 Implementing method decorators
Method decorators help you separate and modularize cross-cutting (orthogonal) code
from your business logic. Similar to proxies, a method decorator can intercept a
method call and apply (decorate) code that runs before and after the method call and is
useful for verifying pre- and postconditions or for enhancing a method’s return value.

 For illustration purposes, let’s circle back to our simple Counter example:

class Counter {
 constructor(count) {
 this[_count] = count;
 }

219Implementing method decorators
 inc(by = 0) {
 return this[_count] += by;
 }
 dec(by = 0) {
 return this[_count] -= by;
 }
}

We’ll write a decorator specification as an object literal that describes the actions or
the functions to execute before and after a decorated method runs, as well as the
names of the methods to decorate. Here’s the shape of this object:

const decorator = {
 actions: {
 before: [function],
 after: [function]
 },
 methods: [],
}

The before action preprocesses the method arguments, and the after action postpro-
cesses the return value. In case you want to bypass or pass through any before or after
action, the identity function (discussed in chapter 4) serves as a good placeholder.

 The next listing creates a custom decorator called validation that captures the
following use case: “Validate the function arguments passed to the function calls inc
and dec on Counter objects.”

const validation = {
 actions: {
 before: checkLimit,
 after: identity
 },
 methods: ['inc', 'dec']
}

Here, we’re going to apply custom behavior before the method runs and use a pass-
through function (identity) as the after action. checkLimit ensures that the num-
ber passed in is a valid, positive integer; otherwise, it throws an exception. Again, we’ll
use the throw expression syntax to write the function as a single arrow function:

const { isFinite, isInteger } = Number;

const checkLimit = (value = 1) =>
 (isFinite(value) && isInteger(value) && value >= 0)
 ? value
 : throw new RangeError('Expected a positive number');

To wire all this code up, we use the Proxy/Reflect APIs to create our action bindings,
using the get trap. The challenge is that get doesn’t let you gain access to the method

Listing 7.36 Defining a custom decorator object with before and after behavior

Applies checkLimit to
enforce preconditions

Leaves the method’s return
value untouched after it runs

Decorates both inc
and dec methods

220 CHAPTER 7 Hooked on metaprogramming
call’s actual arguments; as you know, it gives the method reference in target[key].
Hence, we’ll have to use a higher-order function to return a wrapped function call
instead. This trick was inspired by http://mng.bz/0m7l. Let’s define our action bind-
ing in the next listing.

const decorate = (decorator, obj) => new Proxy(obj, {
 get(target, key) {
 if (!decorator.methods.includes(key)) {
 return Reflect.get(...arguments);
 }
 const methodRef = target[key];
 return (...capturedArgs) => {
 const newArgs =
 decorator.actions?.before.call(target, ...capturedArgs);
 const result = methodRef.call(target, ...[newArgs]);
 return decorator.actions?.after.call(target, result) ;
 };
 }
 })

Now you can see how the object behaves with the decorator applied:

const counter$Proxy = decorate(validation, new Counter(3));
counter$Proxy.inc(); // 4
counter$Proxy.inc(3); // 7
counter$Proxy.inc(-3); // RangeError

You can see in this example how checkLimit abruptly aborts the inc operation when
it sees a negative value being passed to it. Figure 7.3 reinforces the interaction between
the client API augmented with a decorator.

 Decorators are extremely useful for removing tangential code and keeping your
business logic clean. It’s simple to see how you could also refactor use cases such as
logging, password obfuscation, and performance counters as before or after advice.

 In fact, a proposal for static decorators (https://github.com/tc39/proposal
-decorators) uses native syntax to automate a lot of what we did here. These decorators
would have the look and feel of TypeScript decorators, Java annotations, or C# attri-
butes. You could annotate a method with @trace, @perf, @before, and @after, for
example, and have all the wrapping code modularized and moved away from the func-
tion code itself. Static decorators are a feature to keep your eye on; they will signifi-
cantly change the game of application and framework development. This feature is
used extensively in the TypeScript Angular framework.

NOTE Although you can do endless things by using reflection, whether via
symbols or proxies, practice due diligence. There’s such a thing as too much
reflection, and you don’t want your teammates who are debugging your code

Listing 7.37 Main logic that applies a decorator to a proxy object

Saves a
reference to
the method

property for
later use

Returns a wrapped method
reference that we can use to
capture the arguments

Applies the
before action

Executes the original method

Applies the after action

http://mng.bz/0m7l
https://github.com/tc39/proposal-decorators
https://github.com/tc39/proposal-decorators
https://github.com/tc39/proposal-decorators

221Summary
to spend hours figuring out why their code is not behaving as they expect it
to, syntactically speaking. A good heuristic is duplication. When you find your-
self writing the same or similar code over and over across your entire codebase,
that’s a good indication that you can reach into introspection and/or code
weaving to refactor and modularize it.

Summary
 Metaprogramming is the art of using the programming language itself to influ-

ence new behavior or to automate code. It can be implemented statically via
symbols or dynamically via code weaving.

 The Symbol primitive data type is used to create unique, collision-free object
properties.

 Symbols make objects extensible by preventing code from accidentally breaking
API contracts or the internal workings of an object.

 You can use symbols to create static hooks that you can use to alter your code’s
behavior with regard to fundamental operations such as looping, primitive con-
version, and printing.

User
Proxy Decorator

counter$Proxy.inc(2)

[Get]

target.inc(2)

3

Proxy

handler
Counter

actions.before()
checkLimit(2)RangeError if

limit is invalid

actions.after()
identity(3)

3

3

Figure 7.3 The call to counter$Proxy.inc gets intercepted and wrapped with before and after
actions. The method argument (2) is validated by checkLimit and allowed to pass through to the
target object of Counter. Its result (identity(3)) is echoed on the way out by the identity
function and is available to the caller. In the event that checkLimit detects an invalid value, however,
a RangeError is returned to the caller.

222 CHAPTER 7 Hooked on metaprogramming
 JavaScript ships with native reflection APIs such as Proxy and Reflect. These
APIs allow you to weave code into the runtime representation of objects dynam-
ically without polluting their interface with other concerns.

 JavaScript’s reflection APIs make it easy to develop method decorators, which
allow you to implement cross-cutting behavior and modularize sources of dupli-
cation in your code.

Part 4

Data

At this point, you have an architecture with objects and functions con-
nected to one another. All that’s left is to turn the hose on and let the data flow
in. As with your system of conventional PVC pipes connected to bring water to
your house, your application needs to be connected to transform the input into
the desired output. The complexity of connecting everything arises when you
need to prepare for data that can arrive at any point in time, not only when you
expect it. In other words, you don’t know when someone will turn on the water,
but you need to be ready for when they do.

 Chapter 8 teaches you how to tame asynchronous logic with promises and
direct language syntax (async/await). Promises have the advantage of being
compositional objects; you can chain two or three consecutive asynchronous
calls without having to worry about falling into callback hell. As the language of
the web, asynchronous execution is so common that we have built-in language
syntax to create async-aware functions with similar semantics as promises.

 But the best way to emulate a connected application is to assemble the PVC
pipes—virtually, that is. Chapter 9 removes the complexity of asynchronous
logic to level the playing field. In this last chapter, we explore the streams par-
adigm to assemble functional, declarative, compositional, and fluent data flows
to handle both asynchronous and synchronous data. This topic is not easy to
grok by itself; you need to draw on the lessons of the previous eight chapters.
For this purpose, JavaScript is introducing a proposal featuring the Observable
object, which will allow you to treat streams of data in a consistent way. You may
have had a chance to use libraries such as RxJS in the past, perhaps directly or

through frameworks such as Angular. This API brings the basic component of this
library directly to JavaScript.

Linear async flows
For over a decade prophets have voiced the contention that the organization of a single
computer has reached its limits and that truly significant advances can be made only
by interconnection of a multiplicity of computers.

—Gene Amdahl

As Amdhal predicted, the web is a gigantic, distributed, interconnected network, and
the language we use must rise to the challenge by providing appropriate abstractions
that facilitate programming this ever-evolving and ever-changing web. Programming
the web is different from programming local servers, because you can’t make assump-
tions about where the data is located. Is it in local storage, a cache, on the intranet, or
a million miles away? Hence, one of the main design goals of JavaScript is that it
needs to have strong abstractions for asynchronous data operations.

This chapter covers
 Reviewing a basic Node.js architecture

 Working with the JavaScript Promise API

 Assembling promise chains to model complex
asynchronous flows

 Using async/await and asynchronous iterators
225

226 CHAPTER 8 Linear async flows
 JavaScript developers had become accustomed to the callback pattern: “Here’s some
piece of code. Go and do something else (time) and then call it back when you’re
done.” Although this pattern kept us going for a while (and still does), it also pre-
sented difficult and unique challenges, especially when programming on a large scale
and with added complexity. One common example was when we needed to orches-
trate events (such as button clicks and mouse movement) with asynchronous actions
(such as writing an object to a database). It was immediately obvious that callbacks
don’t scale for executing more than two or three asynchronous calls. Perhaps you’ve
heard the term pyramid of doom or callback hell.

 For this book, it’s expected that you are familiar with the callback pattern, so we
will not get into its pros and cons. What’s most important is the solution. Do we have
a way to create an abstraction over callbacks that all JavaScript developers can use in a
consistent manner—perhaps something with a well-defined API, such as an algebraic
data type (ADT; chapter 5)? From the search for this solution, the Promise API was
born, and it has become quite popular for representing most asynchronous program-
ming tasks. In fact, new APIs, libraries, and frameworks that have any asynchronous
logic are almost always represented as promises nowadays.

 This chapter begins with a brief review of the architecture of a common JavaScript
engine, which features, at a high-level, a task queue and an event loop. Understanding
this architecture at a glance is important for understanding how asynchronous code
works to provide concurrent processing. Then we move on to the Promise API to lay
the foundation for JavaScript’s async/await feature. With this API, you can represent
asynchronous processes in a linear, synchronous way, similar to programming in a pro-
cedural style. Promises let you think about the problem at hand without having to
worry about when a task completes or where data resides. Next, you’ll learn how to
take advantage of the composability of promises and powerful combinators to chain
together complex asynchronous logic. Last, you will review the dynamic import state-
ment (mentioned briefly in chapter 6), and look at features including top-level await
and asynchronous iteration.

 It’s hard to talk about asynchronous programming in most programming lan-
guages without mentioning threads. That’s not the case with JavaScript. What makes
asynchronous programming so simple is the fact that JavaScript gives you a single-
threaded model while exploiting the multithreaded capabilities of the underlying
platform (the browser or Node.js). A single-threaded model is not a disadvantage, but
a blessing. We’ll start by taking a peek at this architecture.

8.1 Architecture at a glance
You may be somewhat familiar with how Node.js and most JavaScript engines work
behind the scenes. Without getting into the weeds of any particular runtime imple-
mentation (V8, Chakra, or Spidermonkey), it’s important to give you a high-level idea
of how a typical JavaScript engine works under the hood. A typical JavaScript architec-
ture is

227Architecture at a glance
 Event-driven—The JavaScript engine uses an event loop to constantly monitor a
task queue, also known as a callback queue. When a task is detected, the event
loop dequeues the task and runs it to completion.

 Single-threaded—JavaScript provides a single-threaded model to developers.
There are no standard, language-level threading APIs to spawn new threads.

 Asynchronous—All modern JavaScript engines use multiple threads (managed
by an internal worker pool) so that you can perform nonblocking I/O actions
without blocking the main thread.

Figure 8.1 shows that the event loop is at the heart of this architecture. Every heart-
beat or tick of the event loop picks and runs a new task or slices of a task.

Node.js’s engine does a fine job of abstracting the execution of multiple asynchronous
actions so that they appear to run simultaneously. Behind the scenes, the event loop per-
forms fast scheduling and swapping, using its own thread to interact natively with the
operating system’s kernel APIs or browser thread architecture and to perform all the
necessary bookkeeping of managing threads (called workers) in the pool. The polling
loop is infinite, but it’s not always spinning; otherwise, it would be resource-intensive. It
starts ticking when there are events or actions of interest such as button clicks, file reads,
and network sockets. When a task appears, the event loop dequeues it from the task

Task 1

Thread

1

Thread

2

Thread

n...

Task 2

Task 3

Return 1

Task 4

2. The event loop monitors this queue
and utilizes the platform’s thread
pool to dispatch these tasks

Application

code

Node.js

Event Loop

1. JavaScript engine stores
asynchronous tasks (kind
of like a function) in the
micro-task queue with a
reference to its callback
function

3. Upon return, the
callback is executed

(Task, callback)

Task 1

Task 2

Task 3

Task 4

Figure 8.1 JavaScript’s event-driven, asynchronous architecture. At the heart is the event loop
(a semi-infinite loop), which is the abstraction used to handle concurrent behavior in JavaScript.
The event loop takes care of scheduling new asynchronous tasks and allocating them to any
threads available in the pool. When the task completes, the engine triggers the action’s
callback function to return control to the user.

228 CHAPTER 8 Linear async flows
queue and schedules it to run. Each task runs to completion and invokes the pro-
vided callback to return control to the user, along with the result (if any). This process
works like a clock (literally), yet the user has no idea that any of it is happening. On the
surface, JavaScript does not leak or expose any threading-related code.

 Furthermore, threads can be created internally by server-side or client-side native
APIs (DOM, AJAX, sockets, timers, and others) or by any third-party libraries that
implement native extensions. As JavaScript developers, we are privileged to have this
technology remove this complexity for us. To top it off, we have at our fingertips sim-
ple APIs that put even more layers of abstraction between us and the engine. Promise
is the first line of defense against callback hell and the stepping stone to simplifying
asynchronous flows.

8.2 JavaScript as promised
Promises were created to address the increasing complexity of having to nest callback
within callback functions in favor of flattening these calls into a single, fluent expres-
sion. In this section, you’ll learn how the Promise API simplifies the mental model of
asynchronous programming. It’s important to master this API, because it’s the foun-
dation of async/await and related features.

 Simply put, a Promise object encapsulates some eventual (to-be-computed) value,
much like a regular function. It is capable of delivering a single object, whether that
object is a simple primitive or a complex array. Promises are similar to callbacks in
that they clearly communicate “Go do something; then (time) go do something else,”
which makes them good candidates for one-to-one replacement. The following listing
shows how you’d instantiate a new promise.

const someFutureValue = new Promise((resolve, reject) => {
 const value = // do work...
 if(value === null) {
 reject(new Error('Ooops!'));
 }
 resolve(value);
});

someFutureValue.then(doSomethingElseWithThatValue);

Like callbacks, promises take advantage of the full capabilities of the JavaScript
architecture. In fact, to the engine, there shouldn’t be any difference. Generally, any
event for which some form of callback function is provided (mouse event, HTTP
request, promises, and so on) may use JavaScript’s event loop. (Sometimes, for sim-
ple operations such as a setTimeout, a direct nonblocking system call may be used,
but it is an engine-specific optimization.) The function passed to the Promise con-
structor is called the executor function. The executor runs without blocking the

Listing 8.1 Instantiating a new Promise object

Promises also rely on a callback
function. This function is called

the executor.

The then method allows
you to sequence multiple
promises together.

229JavaScript as promised
main code, and the event loop decides how to schedule the work by nicely weaving
timed slices of asynchronous blocks together with the main code. Figure 8.2 depicts
this process.

Every programming language nowadays supports a similar API, sometimes called a
Task or a Future. The general idea is the following:

doSomething().then(doSomethingElse);

These tasks will run to completion and may take an arbitrary amount of time to run.
The Promise#then method clearly communicates that promises are abstracting over
time (or latency). Promises allow you to work with time in a simple manner (in plain
English, if you will) so that you can focus on solving the real business issues. It helps to
think of them as being the time-bound instruction separator for asynchronous calls,
much like what a semicolon does with synchronous statements:

doSomething(); doSomethingElse();

Promises are ideal return wrappers for operations that may involve waiting or block-
ing, such as I/O or HTTP requests. In fact, the Node.js fs library has slowly evolved
from using synchronous APIs to using callbacks and finally to returning promises—a
good example of the adoption of this pattern over time. You can find both synchro-
nous and asynchronous APIs to access the file system.

 Let’s walk through a simple example that shows this evolution, starting with the
synchronous approach:

fs.readFileSync('blocks.txt');

This approach should be your least-preferred option (and the Node.js team intended
it as such by explicitly labeling it Sync), as it pauses the main thread. Blocking is the
opposite of scaling and goes against the event-driven, single-threaded qualities of

Tasks are ordered in a queue. The event loop listens for
tasks and passes them along to the JS engine.

Task 1 start Task 2 start Task 1 body Task 2 body Task 1 end Task 2 end

When a task ends, the event loop
triggers the callback.

Figure 8.2 A simplified view of how the Node.js architecture handles asynchronous tasks. The
event loop time slices these tasks so that code never blocks, providing the illusion of concurrency.

230 CHAPTER 8 Linear async flows
JavaScript. Use it with caution or only for simple one-off scripts. Second in line is the
default callback version:

fs.readFile('blocks.txt', (err, data) => {
 if (err) throw err;
 console.log(data);
});

This API uses JavaScript’s internal scheduler so that code never halts on the read-
File call. When the data is ready, the supplied callback is triggered with the actual
file contents.

 An intermediate step between callbacks and a fully promise-based filesystem
library is a utility called util.promisify, which adapts callback-based functions to
use Promise:

import util from 'util';

const read = util.promisify(fs.readFile);

read('blocks.txt').then(fileBuffer => console.log(fileBuffer.length));

The caveat is that this utility works with error-first callbacks, a pattern prevalent in many
JavaScript APIs, stating that callbacks should be right-biased, with the error state
mapped to the left argument and the success state mapped to the right. (You learned
about biased APIs in chapter 5.) Like Validation and other monads, the continua-
tion branch (the branch to which Functor.map applies) is always on the right. This
resemblance is coincidental, however. As you’ll see in section 8.2.2, there’s a strong
connection between promises and ADTs.

 Finally, there’s the best approach, which is to use a built-in promisified alterna-
tive library to access the filesystem, available in Node.js as a separate namespace
fs.promises:

import fs from 'fs';

const fsp = fs.promises;

fsp.readFile('blocks.txt').then(
 fileBuffer => console.log(fileBuffer.length));

Arguably, this version is a lot more fluent than the callback-based approach because
code no longer appears to be nested. With a single asynchronous operation, the
improvement might not be obvious, but think about the more intensive tasks that
involve three or four asynchronous calls.

 Now that you’ve seen how an API improves with the use of promises, let’s dive
deeper into why this API was so earth-shaking in the JavaScript world. Earlier, I said
that promises wrap over values to be computed at some arbitrary time. The beauty of
this abstraction, though, is that it blurs where the data resides.

231JavaScript as promised
8.2.1 Principle of data locality

Generally speaking, the principle of data locality is the idea of moving the data closer
to where some computation is taking place, or vice versa. The closer the data, the
faster it moves to the desired destination, through a system bus or through the inter-
net. The varying distances between data and a computing unit, for example, are why
you have different levels of caching in your CPU architecture or even in your Java-
Script applications. Promises allow us to use the same programming model no matter
where the data resides (local or remote) or how long a computation takes (two sec-
onds, two minutes, or two hours). This snippet of code can read a file whether it lives
locally on the server or in some remote location around the world:

fsp.readFile('blocks.txt').then(
 fileBuffer => console.log(fileBuffer.length));

We can say that promises are façades over latency and that data locality will not affect
your programming model. We’ll circle back to this idea when we discuss observables
in chapter 9. Moreover, the idea of modeling a successful or error state is not coinci-
dental. Remember Success and Failure for the Validation ADT in chapter 5?

8.2.2 Are promises algebraic?

In chapter 5, we studied ADTs and their importance in programming as tools to make
certain types of problems composable. They’re also effective at modeling an asynchro-
nous task when we consider time to be an effect. In this section, you’ll see that the
design of ADTs helps you wrap your head around promises by automatically porting
all the benefits of composability from ADTs to asynchronous code.

 First, let’s talk about how promises work. When a Promise object is declared, it
immediately begins its work (the executor function) and sets its status internally to
pending:

const p = new Promise(resolve => {
 setTimeout(() => {
 resolve('Done');
 }, 3000);
});

console.log(p); // Promise { <pending> }

When a promise settles (in this case, after three seconds), there will be only two possi-
ble states: fulfilled (resolve with a value) or rejected (reject with an error). Figure 8.3
captures all the possible states of a Promise object.

 If you think about what you learned in chapter 5, Promise isn’t much different
from Validation. In fact, you can almost stack their diagrams, as shown in figure 8.4.

 Validation also models a binary state. It assumes Success when initialized with a
value and then switches depending on the outcome of the operations that are mapped

232 CHAPTER 8 Linear async flows
to it. You can sort of assume that the same thing happens with promises: they start as
pending or fulfilled and then switch depending on what happens with each reaction
or executor function passed to Promise#then. By the same token, if Validation reaches
a Failure state, the error is recorded and the chain of operations falls through, as
with Promise#catch.

 Looking at the example from an ADT perspective, we can reason that a Promise is
a closed context with enough internal plumbing to abstract over the effects of time.
Promises follow the Promise/A+ specification (https://promisesaplus.com), with the
goal of standardizing them and making them interoperable across all JavaScript
engines.

 Given any ADT C, if you think about Promise#then as C.map and Promise.resolve
as C.of, many of the universal properties of ADTs continue to hold, even composabil-
ity! The one small caveat is that Promise#then is left-biased, so it defines the fulfilled
(success) callback as the left argument and the error callback as the right. The reason
is usability, as most people code with fulfilled callbacks only when chaining multiple
promises, using a single Promise#catch function at the end to handle any errors that
occur at any point in the chain.

 I’ll briefly illustrate some of the properties that make promises ADT-like. The next
listing shows some supporting helper functions used in the examples.

new Promise(executor)

state: 'fulfilled'

result: value

state: 'rejected'

result: Error

state: 'pending'

result: undefined

.re
sol

ve(
val

ue)

.reject(Error)

- fulfilled: Executor succeeded

- rejected: Executor failed

- pending: Hasn’t fulfilled or rejected yet

- settled: Has fulfilled or rejected

Figure 8.3 The states in which a single Promise object may be its life cycle

Validation

Success

Failure

Allows functions to run

OR

Skips functions

Figure 8.4 Structure of the Validation type. Validation offers a choice of
Success or Failure—never both. As with promises, computations continue on the
Success branch.

https://promisesaplus.com/

233JavaScript as promised
const unique = letters => Array.from(new Set([...letters]));
const join = arr => arr.join('');
const toUpper = str => str.toUpperCase();

To prove that promises can work and be reasoned about like any ADT, here are a cou-
ple of the universal properties we discussed in chapter 5, this time using Promise:

 Identity—Executing the identity function on a Promise yields another Promise
with the same value. The expressions

Promise.resolve('aa').then(identity);

and

Promise.resolve('aa');

are equivalent. Both yield

Promise { 'aa' }

 Composition—The composition of two or more functions, such as f after g, is
equivalent to applying g first and then f. The statements

Promise.resolve('aabbcc')
 .then(unique)
 .then(join)
 .then(toUpper);

and

Promise.resolve('aabbcc')
 .then(compose(toUpper, join, unique));

are equivalent. Both yield

Promise { 'ABC' }

So if Promise#then is analogous to Functor.map, which method is analogous to Monad
.flatMap? As you’ve probably noticed, Promise#then allows you to return unwrapped
values as well as Promise-wrapped values; it handles both. Therefore, Promise#then is
Functor.map and Monad.flatMap combined, with the flattening logic handled behind
the scenes. The use case in the following listing showcases both scenarios.

Listing 8.2 Helper functions used in subsequent code samples and figures

Takes a string of letters and removes
duplicates, such as “aabb” -> “ab”

Joins an array
into a string

Uppercases all characters
of the given string

234 CHAPTER 8 Linear async flows
Promise.resolve('aa')
 .then(value => {
 return `${value}bb`
 })
 .then(value => {
 return Promise.resolve(`${value}cc`)
 }); // Promise { 'aabbcc' }

Can we conclude that promises are algebraic or monadic? From a theoretical perspec-
tive, they are not, because promises don’t have all mathematical properties. In fact,
promises don’t follow the fantasy-land specification (chapter 5) that we’d expect from
an ADT. But we’re fortunate that on the surface, promises work the same way and that
we can take advantage of this sound model of programming, which has a low barrier
of entry that allows us to assemble (compose) chains of promises.

8.2.3 Fluent chaining

A promise chain works like any ADT and is created by subsequently calling Promise#then
or Promise#catch on returned Promise objects. This process is shown in figure 8.5.

Each executor returns a new pending promise that changes states depending on the
result of its own executor. If successful, the fulfilled values are passed to the next
promise in the chain, and so on until a non-Promise object is returned. This process
sounds a lot like composition, if you think about it.

Listing 8.3 Promise#then flattening a nested Promise automatically

Handles
simple values

Handles
wrapped values

3. Regardless of the state of the
preceding promise (fulfilled or
rejected), a new Promise object
is created, and the process
repeats.

1. When a new Promise(executor)
is created, it starts in a pending
state, waiting for the result of the
executor function. .then(onSuccess)

.then(,onReject)

.catch(onReject)

Fulfill

Reject

R
eturn

Return

pending

new Promise((resolve, reject) => {
//... executor body

})

2.a Calling the resolve callback
function invokes then with
a value as the first argument.

2.b Calling the reject or throwing
an exception in the executor
will trigger the error branch
of all subsequent then/catch
reactors until the error is handled.

Fulfil
l

Reject

pending

Figure 8.5 A detailed view of the execution of a promise chain. Every Promise object starts as pending and
changes states depending on the outcome of the executor callback. The result is wrapped in a new pending
Promise. (Diagram was inspired by http://mng.bz/Xdx6.)

http://mng.bz/Xdx6

235JavaScript as promised
 Let’s look at different scenarios of how success and error operations execute, start-
ing with a simple scenario of a fully linked chain.

FULLY LINKED CHAIN

The following listing shows an example of passing three reaction functions that are
executed only after the preceding promise succeeds. At each step, new Promise objects
are implicitly created.

Promise.resolve('aabbcc')
 .then(unique)
 .then(join)
 .then(toUpper);

Like ADTs, promises model the conveyor-belt or railway approach to data manipula-
tion. Every operation performs a new data transformation step and returns a new
pending promise that awaits the result of its handler function. If the function is
applied successfully, it settles as fulfilled. You saw a detailed flow in figure 8.5. To keep
things simple for the next use case, I’ll illustrate the final state of the promise at each
step. Figure 8.6 describes this flow.

 Listing 8.4 represents a chain with a single result, whereas listing 8.5 does not.

Listing 8.4 Fully linked chain of promises

Executors are called
only when the preceding
promise is fulfilled.

Promise.resolve

state: 'fulfilled'
result: 'aabbcc'

.then(unique)

.then(join)

.then(toUpper)

state: 'fulfilled'
result: ['a','b','c']

state: 'fulfilled'
result: 'abc'

state: 'fulfilled'
result: 'ABC'

Figure 8.6 Promise chains allow you to
manipulate data as a unidirectional, forward
conveyor belt where every step applies a
different transformation of the data.

236 CHAPTER 8 Linear async flows
BROKEN CHAIN

The next listing shows a Promise object that never links to any other.

const p = Promise.resolve('aabbcc');

p.then(unique); // ['a','b','c']
p.then(join); // Error
p.then(toUpper); // 'AABBCC'

In this case, three different, disjointed Promise objects were created, none of them
linked to the others. This code leads to a runtime error, which most likely was unin-
tended. Figure 8.7 shows the bug and the values that would be stored inside each
resulting promise.

The example shown in listing 8.5 is a common mistake. In this approach, unique, join,
and toUpper all receive 'aabbcc' as input, which is not what the programmer likely
intended. What happens is that the Promise object is passed three different reaction
functions and then executes them in order against the same input value. Not only are
the results incorrect, but one of the promises errors out with a TypeError. Let’s see what
would happen if we were to attach an error handler to the failing promise (figure 8.8).

 As you’d expect, the Promise#catch handler function would apply only to the iso-
lated Promise object and recover, but another one could easily fail. When tasks involve
multiple asynchronous actions, it’s common to see nested promises.

Listing 8.5 Broken chain of promises

All executors are called when p fulfills in that order
and receive the same input. This code produces
three promises: two fulfilled and one rejected.

result: ['a','b','c']

Promise.resolve

.then(unique)

.then(join)

.then(toUpper)

Wrong resultX

state: 'fulfilled'
result: 'aabbcc'

state: 'fulfilled'

state: 'fulfilled'
result: 'AABBCC'

state: 'rejected'
result: TypeError

Figure 8.7 This approach does not form a chain: It’s a bug. The code adds multiple
handlers to the same Promise object, each applying one transformation to the original
data, and obtains three different and unexpected results.

237JavaScript as promised
NESTED CHAINS

Suppose that you are working with some remote data store, and you want to pull data
for a specific user together with their shopping-cart items and return the response as a
single object. To do so, you’d need to merge data from two endpoints and combine
both responses. The best option would be to use a promise combinator, which we’ll
look at in section 5.3. Another way would be to nest promises.

 It’s true that promises were designed to avoid having to write nested callbacks in
favor of a flat chain. The reason why promises are much better than callbacks, though,
is that a properly nested promise is still a single chained promise, indentation aside.
This mental model is much easier to reason about, as the next listing illustrates.

const concat = arr1 => arr2 => arr1.concat(arr2);

Promise.resolve('aabbcc')
 .then(unique)
 .then(abc =>
 Promise.resolve('ddeeff')
 .then(unique)
 .then(def => abc.concat(def))
)
 .then(join)
 .then(toUpper); // 'ABCDEF'

As you can see, even returning a nested promise joins back to the main chain, as shown
in figure 8.9.

Listing 8.6 Nested promise

.catch(() '')

Promise.resolve

.then(unique)

.then(join)

.then(toUpper)

Wrong resultX

state: 'fulfilled'
result: 'aabbcc'

state: 'fulfilled'
result: ''

state: 'fulfilled'
result: 'AABBCC'

state: 'rejected'
result: TypeError

result: ['a','b','c']

state: 'fulfilled'

Figure 8.8 Recovering the failing promise and returning a default, empty value. This approach returns
another pending promise that fulfills immediately with an empty value.

Links with a
nested chain

238 CHAPTER 8 Linear async flows
The real challenge in nesting is handling errors. How you decide to structure your code
depends on how you’re planning your data and/or errors to propagate. Data propa-
gates by using Promise#then. Errors propagate by using Promise#then(, onRejected)
or Promise#catch.

Which is better: catch or then?
Each approach has pros and cons, and both work slightly differently. Generally, though,
Promise#catch seems to be the more popular approach and also more familiar to
developers from a different background, such as Java. Unless you add Promise#catch
after every Promise#then, however, any errors in the chain will be handled by a down-
stream Promise#catch block, and you won’t know which handler caused it. Using
Promise#then does give you a bit more control of where the error occurred (the pre-
ceding one) at the expense of being a little less fluent, syntactically speaking. Never-
theless, both approaches follow the same chaining rules, as both return new pending
promises.

JavaScript is the language of choice, after all, so use whichever approach works best
for you and your coding preference. In this book, however, we’ll be sticking with
Promise#catch, because it’s also in line with the downstream pattern of error han-
dling present in observables (chapter 9).

Promise.resolve

state: 'fulfilled'
result: 'aabbcc'

.then(unique)

.then(concat)

.then(join)

state: 'fulfilled'
result: 'ddeeff'

state: 'fulfilled'
result: ['a','b','c''d','e','f']

state: 'fulfilled'
result: 'abcdef'

state: 'fulfilled'
result: ['a','b','c']

Promise.resolve

.then(unique) state: 'fulfilled'
result: ['d','e','f']

.then(toUpper)

state: 'fulfilled'
result: 'ABCDEF'

Figure 8.9 A flow that includes
a nested promise. The returned
nested promise links itself back
with the source Promise object,
modeling a linear flow.

239JavaScript as promised
The tricky part is determining the root promise object to which you’re attaching your
reaction functions. To return to our simple use case, let’s cause some function in the
chain to fail on purpose in the next listing.

Promise.resolve('aabbcc')
 .then(unique)
 .then(() => throw new Error('Ooops!'))
 .then(join)
 .then(toUpper)
 .catch(({message}) => console.error(message));

The error in the third line triggers the rejection handlers downstream to the
Promise#catch call, effectively skipping the join and toUpper steps.

 The next listing shows an example of using nested promises with errors.

Promise.resolve('aabbcc')
 .then(unique)
 .then(data => {
 Promise.resolve(data)
 .then(join)
 .then(() => throw new Error('Nested Ooops!'))
 })
 .then(toUpper)
 .catch(({message}) => console.error(message));

In this case, you’d expect the nested chain to join the main chain and print “Nested
Ooops!” at the end. Can you spot the bug that prevents this from happening? That’s
right: the developer forgot to return the nested promise to be embedded properly in
the chain. Now that nested promise is essentially a new rogue pending promise (fig-
ure 8.10).

 This result usually happens when the author forgets to return the nested promise
object or wants to use an arrow function but uses curly braces incorrectly. The follow-
ing listing fixes the problem.

Promise.resolve('aabbcc')
 .then(unique)
 .then(data =>
 Promise.resolve(data)
 .then(join)
 .then(() => throw new Error('Nested Ooops!'))
)
 .then(toUpper)
 .catch(({message}) => console.error(message))

Listing 8.7 Fully linked chain with error

Listing 8.8 Nested promise chain with error

Listing 8.9 Rejoining the nested chain to handle the error properly

Skipped

Catch handler receives the
error object and prints Ooops!

Nested promise fails
with an error but
goes unhandled

Throws property access
on undefined error

Removed parenthesis to
make an arrow function

Prints “Nested Ooops!”
to the console

240 CHAPTER 8 Linear async flows
Now the nested promise is properly embedded in the chain, and the data (or error in
this case) propagates as intended to print “Nested Ooops!” (figure 8.11).

 The design of promises is also fluent on the Promise#catch call. This technique
is useful for recovering from errors with default values. Consider the trivial fix in the
following listing.

Promise.resolve('aabbcc')
 .then(unique)
 .then(data =>
 Promise.resolve(data)
 .then(join)
 .then(() => throw new Error('Inside Ooops!'))
 .catch(error => {
 console.error(`Catch inside: ${error.message}`)
 return 'ERROR'
 })
)

Listing 8.10 Recovering from an error with a default value

state: 'rejected'
result: Error('Nested Ooops!')

.then(() Error)

state: 'pending'
result: undefined

Entire leg of the
chain is unhandled

.then(toUpper)

state: 'rejected'
result: "Cannot read property
'toUpperCase' of undefined"

.catch(::console.error)

.then(data {...})

Promise.resolve

state: 'fulfilled'
result: 'aabbcc'

.then(unique)

.then(join)

state: 'fulfilled'
result: 'abc'

state: 'fulfilled'
result: ['a','b','c']

Promise.resolve

state: 'fulfilled'
result: ['a','b','c']

state: 'fulfilled'
result: undefined

Figure 8.10 Because the developer forgot to return the Promise object, the nested promise went
off on its own, and its result or error (as the case may be) would never join the main promise chain.

When you use the arrow
function, the return
statement is implicit.

241JavaScript as promised
 .then(toUpper)
 .then(::console.log)
 .catch(({message}) => console.error(message));

It’s important to mention that your promise chains must be able to handle error cases.
If they fail to do so, JavaScript engines emit a warning (at the time of this writing). You
may have seen this message in your console:

UnhandledPromiseRejectionWarning: Unhandled promise rejection. This error
originated either by throwing inside of an async function without a catch
block, or by rejecting a promise which was not handled with .catch().

DeprecationWarning: Unhandled promise rejections are deprecated. In the
future, promise rejections that are not handled will terminate the Node.js
process with a non-zero exit code.

What this message tells you is that, internally, the JavaScript engine is handling the
error for you and failing gracefully. As you might expect, you wouldn’t want this situa-
tion to continue forever, so if you are seeing this warning now, you’re probably miss-
ing some error-handling code, and your best bet is to fix the problem right away.

 Finally (no pun intended), you can end promise chains with the Promise#finally
method. As you’d expect, the this callback has the same semantic structure as the

state: 'rejected'
result: Error('Nested Ooops!')

.then(() Error)

.catch(::console.error)

.then(data Promise)

Promise.resolve

state: 'fulfilled'
result: 'aabbcc'

.then(unique)

.then(join)

state: 'fulfilled'
result: 'abc'

state: 'fulfilled'
result: ['a','b','c']

Promise.resolve

state: 'fulfilled'
result: ['a','b','c']

state: 'fulfilled'
result: undefined

Figure 8.11 Fixing the bug effectively flattens the chain. Now each result/error is handled
and accounted for.

242 CHAPTER 8 Linear async flows
finally block after a try block. The callback executed after the promises settles
regardless of whether it fulfilled, as the next listing shows.

Promise.resolve('aabbcc')
 .then(unique)
 .then(join)
 .then(toUpper)
 .then(console.log)
 .finally(() => {
 console.log('Done')
 });

As you can see, maneuvering a promise chain involves carefully threading through
and connecting promise objects. If you need to nest a promise to perform additional
asynchronous logic, remember to connect it back to the main line.

8.2.4 Promises in the wild

This section provides a couple of real-world examples. The first example uses the
promisified filesystem API to count all the blocks saved to a file. For this task, we’ll
program a function called countBlocksInFile in the next listing.

function countBlocksInFile(file) {
 return fsp.access(file, fs.constants.F_OK | fs.constants.R_OK)
 .then(() => {
 return fsp.readFile(file)
 })
 .then(decode('utf-8'))
 .then(tokenize(';'))
 .then(count)
 .catch(error => {
 throw new Error(`File ${file} does not exist or you have
 no read permissions. Details: ${error.message}`)
 });
}

countBlocksInFile('blocks.txt')
 .then(result => {
 result // 3
 });

Here’s another real-world example that implements the complicated logic of mining a
new block into the chain. This code is complex because it mixes synchronous and
asynchronous code that involves a couple of nested asynchronous operations: a long-
running operation to mine a block and a dynamic import to read the mining reward
setting. This service function is implemented in BitcoinService.

Listing 8.11 Promise chain with Promise#finally

Listing 8.12 Counting all blocks in a file

Prints 'ABC'

Always prints 'Done'
regardless of the state
of the promise

fsp.access does not
produce a value. If access
is granted, it resolves;
otherwise, it rejects.

243JavaScript as promised

V
ch
th
a
A
tr
re
T
th
F
o
se

t

t a
he
s
ck
 The code in listing 8.13 shows a crucial part of the blockchain protocol—an over-
simplification, of course. It highlights the extensive work that miners need to do to
gain any reward. In essence, a miner mines the new block into the chain. This mining
process also runs the proof-of-work algorithm. After a successful mining, the miner
would collect any rewards that were previously stored as pending transactions. After
the block is inserted, a miner validates the entire blockchain structure from beginning
to end. All these tasks would have run on a single miner node, which has its own copy
of the entire blockchain tree. In our example, the blockchain service takes care of cre-
ating a new reward transaction and puts that transaction back into the chain as a
pending transaction for the next miner to come in. All these operations can take vary-
ing amounts of time, so using promises to smooth over all of them and keep a flat,
simple-to-reason-about structure is beneficial.

 function minePendingTransactions(rewardAddress,
 proofOfWorkDifficulty = 2) {

 const newBlock = new Block(ledger.height() + 1, ledger.top.hash,
 ledger.pendingTransactions, proofOfWorkDifficulty);

 return mineNewBlockIntoChain(newBlock)
 .then(:: ledger.validate)
 .then(validation => {
 if (validation.isSuccess) {
 return import('../../common/settings.js')
 .then(({ MINING_REWARD }) => {
 const fee =
 Math.abs(
 ledger.pendingTransactions
 .filter(tx => tx.amount() < 0)
 .map(tx => tx.amount())
 .reduce((a, b) => a + b, 0)
) *
 ledger.pendingTransactions.length *
 0.02;

 const reward = new Transaction(
 network.address, rewardAddress,
 Money.sum(Money('B|', fee), MINING_REWARD),
 'Mining Reward');
 reward.signTransaction(network.privateKey);

 ledger.pendingTransactions = [reward];

 return ledger;
 })
 }
 else {
 new Error(`Chain validation failed ${validation.toString()}`);

Listing 8.13 Mining a block in the chain

Mines a new block into
the chain: our first
async operation.

alidates the entire
ain. As with fs.access,
e promise resolves on

 successful validation.
 failed validation
anslates into a
jection downstream.

he catch block receives
e error and logs it.

or more information
n the bind operator,
e appendix A.

Dynamically imports the
settings. Dynamic impor
uses promises. This new
nested async operation
is chained back into the
existing bigger chain.

Destructures the
MINING_REWARD setting.
This value is used by the
blockchain system to inser
transaction that rewards t
miner. This reward become
effective when the next blo
is added to the chain.

More transactions
mean more rewards.

Service creates
a new reward

transaction.
Clears all pending
transactions and places
reward in chain to
incentivize next miners

244 CHAPTER 8 Linear async flows
 }
 })
 .catch(({ message }) => console.error(message));
 }

Despite the complexity, at this point the chained approach should look familiar to
you because we’ve been talking about ADTs since chapter 5 and have been building
sequences of operations. Everything makes more sense when you can relate
Promise#then as Functor.map and Monad.flatMap. Applying the right abstractions to
the problem at hand makes your code leaner and more robust, which is why promises
win over callbacks.

 So far, I’ve covered single-file promise chains. Often, you’ll need to handle more
than one task at a time. Perhaps you’re mashing up data from multiple HTTP calls or
reading from multiple files. This situation leads to promise chains that introduce
forks in the road.

8.3 API review: Promise combinators
As function combinators (compose and curry) accept functions and return a func-
tion, promise combinators take one or more promises and return a single promise.
As you know, ECMAScript 2015 shipped with two incredibly useful static operations:
Promise.all and Promise.race. In this section, I’ll review those two APIs and intro-
duce two new combinators that help fill in additional use cases: Promise.allSettled
and Promise.any. These combinators are extremely useful for reducing compli-
cated asynchronous flows to simple linear chains, especially when the task requires
you to combine data from multiple remote sources. To illustrate these techniques
better, we need to find some long-running operation we can use to put these APIs to
the test.

 Let me pause here to set up the code sample. In chapter 7 (listing 7.8), I showed a
simple proof-of-work function. Here it is again:

function proofOfWork (block =
 throw new Error('Provide a non-null block object!')) {
 const hashPrefix = ''.padStart(block ?.difficulty ?? 2, '0');
 do {
 block.nonce += 1;
 block.hash = block.calculateHash();
 } while (!block.hash.toString().startsWith(hashPrefix));
 return block;
}

This function uses brute force to recalculate the given block’s hash until its value starts
with the provided prefix. At every iteration, the block’s nonce property is updated and
factored into the hashing process. This operation may occur immediately or may take
a few seconds to complete, depending on how long hashPrefix is and on the nature
of the data being hashed. Again, using promises means we don’t have to worry about
this operation.

245API review: Promise combinators

pos
fro
as

er
 The examples that we’re about to see call the proof-of-work function asynchro-
nously, using a new function called proofOfWorkAsync. To simulate true concurrency,
we can use special Node.js libraries that implement the Worker Threads API (https://
nodejs.org/api/worker_threads.html). These libraries are not part of the JavaScript
language, of course. JavaScript’s memory model is single-threaded, as discussed at the
beginning of this chapter. Rather, these libraries use low-level OS threading processes
with an abstraction called a Worker (a thread) to execute JavaScript in parallel.

 The worker_threads module can help you get around this situation on the server
and is similar to the Web Workers API in the browser. This function looks like the
following listing.

import { Worker } from 'worker_threads';
...
function proofOfWorkAsync(block) {
 return new Promise((resolve, reject) => {
 const worker = new Worker(<path-to-proof-of-work-script>.js, {
 workerData: toJson(block)
 });
 worker.on('message', resolve);
 worker.on('error', reject);
 worker.on('exit', code => {
 if (code !== 0)
 reject(new Error(`Worker stopped with exit code ${code}`));
 });
 });
}

Now let’s look at the code for the worker script. This script loads, calls the proof-of-
work function, and posts its result back to the calling script. From the caller’s point of
view, the time from when the worker begins and the “message” or “error/exit” events
eventually fire is hidden inside the promise, effectively removing the notion of time
from the equation.

 The worker code is simple; it deserializes the JSON block string message passed to
it and then uses it to create a new Block object that proofOfWork requires. Finally, the
result is posted back to the main thread, as shown in the next listing.

import {
 parentPort, workerData
} from 'worker_threads';
import Block from '../../Block.js';
import proofOfWork from './proof_of_work.js';

const blockData = JSON.parse(workerData);

const block = new Block(blockData.index, blockData.previousHash,
 blockData.data, blockData.difficulty);

Listing 8.14 Proof-of-work wrapper using the Worker Threads API

Listing 8.15 Web worker logic

Wraps the worker
execution with a
promise

Passes serialized JSON block data to
the proof-of-work script by using the
toJson helper function, which hooks
into the object’s Symbol.for('toJson')
(see chapter 7)

Handles
message
ted back
m script
a resolve

Handles
ror with

reject

Deserializes
the JSON
representation

https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/worker_threads.html

246 CHAPTER 8 Linear async flows
proofOfWork(block);

parentPort.postMessage(block);

Parallelism is beyond the scope of this book, but the main idea is that you instantiate a
Worker with a handle to a script that performs some task in parallel. Then you use
message-passing to post data (in this case, the hashed block object) back to the main
thread.

 The examples that you’re about to see rely on running proofOfWokAsync passing
blocks with different difficulty settings. Because we’re not interested in forming a
blockchain to track transactions and all the works, we can use the Block API directly.
Also, we’ll use a couple of more helper functions, one to generate random hashes to
fill in the previousHash constructor argument for new blocks and one to simulate a
rejection after some scheduled amount of time, as shown in the following listing.

function randomId() {
 return crypto.randomBytes(16).toString('hex');
}

function rejectAfter(seconds) {
 return new Promise((_, reject) => {
 setTimeout(() => {
 reject(new Error(`Operation rejected after ${seconds} seconds`))
 }, seconds * 1_000);
 });
}

Because we’re using a promise to encapsulate this ordeal, the caller has no idea how
or where the operation is taking place; it’s location-agnostic.

 Let’s begin reviewing promise combinators, starting with Promise.all.

8.3.1 Promise.all

You can use Promise.all to schedule multiple independent operations in a concur-
rent manner and then collect a single result when all the operations are complete.
This technique is useful when you need to mash together data from different APIs as a
single object, taking advantage of the internal multithreading mechanism of Node.js
(discussed in section 8.1). The next listing shows an example.

Promise.all([
 proofOfWorkAsync(new Block(1, randomId(), ['a', 'b', 'c'], 1), 500),
 proofOfWorkAsync(new Block(2, randomId(), [1, 2, 3], 2), 1000)
])
 .then(([blockDiff2, blockDiff3]) => {
 blockDiff2.hash?.startsWith('0'); // true

Listing 8.16 Helper functions used in the next async examples

Listing 8.17 Combining promises with Promise.all

Runs proof-of-work algorithm

Posts the hashed block data
back to the main thread

This code uses numeric separators that make
long numbers more readable, using a visual
separation between groups of digits.

Returns an array of all results in
the same order as the input array

247API review: Promise combinators
 blockDiff3.hash?.startsWith('00'); // true
 });

At a high level, this code looks much like the fork-join model: it starts all tasks “simul-
taneously,” waits for them to fulfill, and then joins them into a single aggregated
result. In the event of a rejection, it rejects with the first promise that rejects.

 Instead of waiting for all promises to complete, suppose that you’re only interested
in the first operation that succeeds. In this case, you can use Promise.race.

8.3.2 Promise.race

This method returns a promise with the outcome of the first promise that either fulfils
or rejects, with the value or reason from said promise. Promise.race solves interesting
problems. Suppose that you’re implementing a web frontend with a highly available
API backend or distributed caches—a common occurrence in modern cloud deploy-
ments. You have an API backend in the US East region and one in the US West region.
You can use Promise.race to fetch data from both regions at the same time. The
region with the lowest latency wins. This situation could guarantee consistent perfor-
mance of your backend as your users roam about the country.

 Let’s use this API to race the hashing of two blocks in the next listing.

Promise.race([
 proofOfWorkAsync(new Block(1, randomId(), ['a', 'b', 'c'], 1)),
 proofOfWorkAsync(new Block(2, randomId(), [1, 2, 3], 3))
])
 .then(blockWinner => {
 blockWinner.hash?.startsWith('0'); // true
 blockWinner.index; // 1
 });

As you would expect, the block with the smaller difficulty value wins the race. Promise
.all short-circuits when any promise is rejected, and Promise.race short-circuits when
any promise is settled. By contrast, Promise.allSettled and Promise.any are less
sensitive to errors, allowing you to provide better error handling. You see these combi-
nators in action in section 8.3.3.

8.3.3 Promise.allSettled

The downside to using Promise.all is that the promise will reject if any of the pro-
vided promises rejects. If you’re trying to load data to render multiple sections of an
application, one failure means that you’ll have to show error messages in all sections.
If that’s not what you want, perhaps you want to show an error only for the sections in
which the data fetch operation failed.

 As part of ECMAScript 2020, Promise.allSettled returns a Promise that resolves
after all the given promises have fulfilled or rejected (settled). The result is an array of

Listing 8.18 Combining promises with Promise.race

Returns a
single result

248 CHAPTER 8 Linear async flows

S
ob
special objects that describes the outcome of each promise. Each outcome object fea-
tures a status property (fulfilled or rejected) and a value property with the array of
the fulfilled results, if applicable.

 Let’s use this API in the next listing with a promise that fulfils and one that rejects
to show you how it differs from Promise.all.

Promise.allSettled([
 proofOfWorkAsync(block),
 rejectAfter(2)
]);
 .then(results => {
 results.length; // 2
 results[0].status; // 'fulfilled'
 results[0].value.index; // 1

 results[1].status; // 'rejected'
 results[1].reason.message;// 'Operation rejected after 2 seconds'
 });

Up until now, you’ve probably used Promise.all to load multiple pieces of data at the
same time. Promise.allSettled is a much better alternative because a failure won’t com-
promise the entire promise result; it does not short-circuit. Finally, there’s Promise.any.

8.3.4 Promise.any

This method is the opposite of Promise.all. If any promise passed in is fulfilled,
regardless of any rejections, the resulting promise fulfils with the value of said prom-
ise. This API is beneficial when you care only whether a promise resolves from the col-
lection and want to ignore any failures. Promise.any returns a rejected promise when
all promises reject, as the next listing shows.

return Promise.any([
 Promise.reject(new Error('Error 1')),
 Promise.reject(new Error('Error 2'))
])
 .catch(aggregateError => {
 aggregateError.errors.length; // 2
 })

You may think that this API behaves a lot like Promise.race. The small subtlety is that
it returns the first resolved value (if present), whereas Promise.race returns the first
settled (resolve/rejected) value. The one caveat is the return value. If any promise is
successful, you should expect then to execute with the result. If all promises reject,
however, Promise#then returns a new Error type called AggregatedError on the
Promise#catch block, which contains an array of all failures.

Listing 8.19 Combining promises with Promise.allSettled

Listing 8.20 Combining promises with Promise.any

Uses setTimeout to call
reject after two seconds

First result includes
the hashed block.econd result

ject includes
the rejected

outcome.

249async made easy
 At this point, you’ve learned how to instantiate promises, form chains, and com-
bine the results of multiple promises. Mastering these techniques is key to designing
applications that are performant and, better yet, responsive. But if promises make
asynchronous programming so much easier, why not elevate them from APIs to pro-
gramming-language syntax?

 Section 8.4 shifts the discussion to the async/await syntax, which is a language
feature that allows you to accomplish the same things you’ve learned about up to now.

8.4 async made easy
The async/await feature is designed to blur the lines between synchronous and
asynchronous programming at the language level. This feature appeals to develop-
ers who prefer the imperative coding style, which uses separate statements to solve a
problem, instead of one long sequence of then expressions. async/await also borrows
the mental model of try/catch/finally to smooth over the then(...).catch(...)
.finally(...) logic. Here’s an example:

async function fetchData() {
 const a = await callEndpointA();
 const b = await callEndpointB();
 return {
 a, b
 };
}

Promises are among the building blocks of JavaScript’s async/await feature. From a
usability standpoint, you can think of both features as working the same way. Like
promises, async functions operate in a separate order from the rest of the code via the
event loop, returning an implicit Promise as its result, which you can Promise#then
or await.

 To understand this way of coding, refactor countBlocksInFile. As it stands now,
this function returns a Promise object, and the caller is expected to process the result
through the then method. Here is that function:

function countBlocksInFile(file) {
 return fsp.access(file, fs.constants.F_OK | fs.constants.R_OK)
 .then(() => {
 return fsp.readFile(file);
 })
 .then(decode('utf-8'))
 .then(tokenize(';'))
 .then(count)
 .catch(error => {
 throw new Error(`File ${file} does not exist or you have
 no read permissions. Details: ${error.message}`);
 });
}

250 CHAPTER 8 Linear async flows
You can refactor the function to take advantage of async/await systematically. Here
are the steps:

1 Add async to the function signature. This steps communicates a Promise object’s
return value to the caller and makes the function self-documenting (always a
good thing).

2 Move Promise#catch to its own try/catch block that wraps over the entire
asynchronous logic.

3 Convert every Promise#then step to an await statement and make the input to
the success function an explicit local variable. In essence, you unlink the prom-
ise chain into separate imperative statements.

The next listing shows how this function looks after the transformation.

const fsp = fs.promises;

async function countBlocksInFile(file) {
 try {
 await fsp.access(file, fs.constants.F_OK | fs.constants.R_OK);
 const data = await fsp.readFile(file);
 const decodedData = decode('utf8', data);
 const blocks = tokenize(';', decodedData);
 return count(blocks);
 }
 catch(e) {
 throw new Error(`File ${file} does not exist or you have
 no read permissions. Details: ${e.message}`);
 }
}

const result = await countBlocksInFile('blocks.txt');
result; // 3

Figure 8.12 shows that when the output of an awaited expression is connected to the
next as input, the data flows like a promise chain.

 Technically speaking, countBlocksInFile works the same as before. You can even
mix the new syntax with the Promise API, and everything would work the same way:

countBlocksInFile('blocks.txt')
 .then(::console.log); // Prints 3

To clarify, the async keyword in the function signature is acting as a type definition.
It’s a cue to the caller and the compiler that this function needs special handling and

Listing 8.21 Using async/await to count blocks in blocks.txt

Denotes an async function that returns
a Promise under the covers (required
to use await in the function body)

Tests user’s permissions for the
specified path. Underneath, the

promise will fail if the user is
unable to access the file or the

file does not exist.

All the await calls use promises behind the scenes, so
although the code reads as though it’s blocking for
I/O, everything is asynchronous under the hood.

The rejection of any await call (promise)
jumps into the catch block.

251async made easy
will return a Promise. Also, the keyword await may be deceiving. This keyword has
been standardized across many languages and makes sense from a semantics point of
view. But from a technical standpoint, nothing is “waiting” or “blocking.”

 As mentioned earlier, async/await turns asynchronous code synchronous, making
it more verbose and easier to read for people who prefer the imperative style. But this
syntax has the same caveats as promises in that after you introduce an async call, every
call site that leads to it needs to be await-ed. This drawback is easy to miss, because
the code looks like a synchronous function. The same is true of errors. Rejections are
easy to miss if you forget to wrap awaited calls inside try/catch. If you forget to write
await, you’ll see the underlying Promise-wrapped return value instead of the free
value.

 Although async/await promotes a more imperative style of coding, JavaScript
remains flexible enough that you can use it functionally. You can use the pipeline
operator to compose asynchronous calls like this one, for example:

const blocks = path.join(process.cwd(), 'resources', 'blocks.txt')
 |> (await countBlocksInFile)

In this case, the resulting path string is input into countBlocksInFile and awaited.
The result, as expected, is an async value that we can unwrap with another await to
extract its value:

await blocks; // 3

In our trivial examples so far, we’ve worked with small files that can be easily loaded in
memory. If you need to find a particular block object, it’s simple to read the file

state: "fulfilled"
result: undefined

state: "fulfilled"
result: buffer

.then(decode('utf8'))

state: "fulfilled"
result: 3

.then(count)

fsp.access(..) .then(() fsp.readFile)

state: "fulfilled"
result: '<block-data>'

Figure 8.12 async/await follow the
same chaining rules as promises.

252 CHAPTER 8 Linear async flows
entirely into memory and work with the objects there. In the real world, this solution
won’t always scale, especially with larger files or in devices with much lower available
memory. A better method is to stream and iterate over the file in small chunks. Sec-
tion 8.5 shows how async/await can solve this problem.

8.5 async iteration
As simple and convenient as an API such as fsp.readFile is, these APIs don’t scale to
larger files because they attempt to load all the file’s content into memory at the same
time. You can get away with this situation on a server for small files, for the most part.
But in browsers, especially on mobile devices (with reduced memory capacity), this
practice is an antipattern. In these cases, you need to traverse or iterate over a file as a
moving window so that you load only a chunk of the file. You face a dilemma, how-
ever: reading a file is asynchronous, whereas iteration is synchronous. How can we rec-
oncile these two operations?

 In this section, you’ll learn about async iterators, which provide an elegant way to
work with large amounts of data, regardless of where that data is located. The mental
model is as simple as iterating through a local array.

 Chapter 7 left off with simple iterators. Recall that you make any object iterable by
implementing the well-known @@iterator symbol. This method returns an Iterator
object with values that have the following shape:

{value: <nextValue>, done: <isFinished?>}

The JavaScript runtime hooks into this symbol and consumes these objects until done
returns true. In the synchronous world, the CPU controls the flow of data in an
expected, sequential way, so the value of the {value, done} pair is known at the cor-
rect times. Unfortunately, iterators and loops were not designed to work asynchro-
nously, so we will need a little bit of extra help, as the following example shows:

function delay(value, time) {
 return new Promise(resolve => {
 setTimeout(resolve, time, value);
 });
}

for (const p of [delay('a', 500), delay('b', 100), delay('c', 200)]) {
 p.then(::console.log);
}

Following the normal loop protocol, the output should be 'a', 'b', and then 'c'.
Instead, it’s 'b', 'c', and then 'a'. We must communicate to the JavaScript runtime
that it needs to wait to synchronize on the latency of the values being iterated over.
One way is to treat the sequence of promises as a composition. Remember that
composing is analogous to reducing. You can reduce the array of Promise objects

253async iteration
into a single promise chain. reduce will aggregate a collection of elements into a single
one, starting from an arbitrary initial object. In this case, we can start with an empty, ful-
filled Promise object and use it to attach the reduced set of promises, forming a single
chain. This approach effectively enforces execution in the expected order.

 The next listing shows how to execute this task in a single expression.

[delay('a', 500), delay('b', 100), delay('c', 200)]
 .reduce(
 (chain, next) => chain.then(() => next).then(:: console.log),
 Promise.resolve()
);

Now the code prints the expected 'a', 'b', and then 'c', in the correct order. The
way reduce is used here is incredibly elegant and terse, but it can look obtuse if you
don’t understand promise chaining or how reduce works (both of which are covered
in this book). Let’s sugar-coat this logic with async iteration as a traditional for...of
loop in the following listing.

for await (const value of
 [delay('a', 500), delay('b', 100), delay('c', 200)]) {
 console.log(value);
}

reduce helped us create the mental model for how an asynchronous loop works,
which is depicted in figure 8.13.

 This figure looks familiar. The await keyword in front of the loop resolves each
promise so that the loop variable points to the value wrapped inside it. This syntax
computes the same result as the one with reduce because it takes care of unwrap-
ping and executing the asynchronous operation in order as part of the iteration
behavior. Async iteration significantly cleans up solving complicated problems that
involve working with input streams, ordering a sequence of asynchronous tasks and
others.

 As an example, let’s rework our countBlocksInFile use case, which reads the
entire file in memory, to use async iteration so that it scales to files of any size. List-
ing 8.24 is a bit more complex than listing 8.21, but it’s well worth examining because
this function can handle much larger files. Most of the complexity inside the body of
the loop stems from having to deal with the integrity of the individual block objects
read in chunks and figure out where one ends and the other begins.

Listing 8.22 Reducing an array of promises

Listing 8.23 Processing an array of promises with async iteration

Reducer function concatenates the
chained promise object to the next

and prints the value.
Initial object, which

becomes the first object in
the reducer chain

Note the use of
await in front of
the loop condition.

254 CHAPTER 8 Linear async flows
import fs from 'fs';

async function countBlocksInFile(file) {
 try {
 await fsp.access(file, fs.constants.F_OK | fs.constants.R_OK);

 const dataStream = fs.createReadStream(file,
 { encoding: 'utf8', highWaterMark: 64 });

 let previousDecodedData = '';
 let totalBlocks = 0;

 for await (const chunk of dataStream) {
 previousDecodedData += chunk;
 let separatorIndex;
 while ((separatorIndex = previousDecodedData.indexOf(';')) >= 0) {
 const decodedData =
 previousDecodedData.slice(0, separatorIndex + 1);

 const blocks = tokenize(';', decodedData)
 .filter(str => str.length > 0);

 totalBlocks += count(blocks);

 previousDecodedData =
 previousDecodedData.slice(separatorIndex + 1);
 }
 }

Listing 8.24 Counting blocks in files of any size

delay('a', 500)

.then(delay('b', 100))

.then(delay('c', 200))

{done: false, value: Promise}

{done: false, value: Promise}

{done: false, value: Promise}

state: 'fulfilled'
result: 'a'

state: 'fulfilled'
result: 'b'

state: 'fulfilled'
result: 'c'

.then(() {done: true})

500 ms

←

←

100 ms

←

←

200 ms

←

←

Figure 8.13 for...of
processes the collection of
tasks sequentially and
preserves their order.

Instead of reading the entire file,
create a stream so that you can read

chunks of “highWaterMark” size.

For this example,
highWaterMark is set to
64 bytes so that data is
delivered in small chunks.

Iterates over the stream, reading
the next block of raw text

Handles the
block delimiter
(if present) to
obtain a clean
row of blocks

Starts the next row
after the last delimiter

is read to avoid reading
incomplete block data

255async iteration

R

 if (previousDecodedData.length > 0) {
 totalBlocks += 1;
 }
 return totalBlocks;
 }
 catch (e) {
 console.error(`Error processing file: ${e.message}`);
 return 0;
 }
}

async/await gives you the freedom to double down on the logic of the problem at
hand and forget about the intricacies of asynchronous programming.

 Although promises certainly are the more functional, fluent approach, async/
await returns us to an imperative paradigm through the automatic wrapping and
unwrapping of data. Compared with an ADT such as Validation, async is equivalent
to a Success.of, await is analogous to a Validation.map (or Promise#then), and
Promise#catch models the Failure state.

 In listing 8.24, you saw that the object dataStream was asynchronously iterated
over. You may wonder how to make your own objects async-iterable. In chapter 7, we
discussed how the @@iterator symbol allows you to spread and enumerate elements
of a custom object. Likewise, the @@asyncIterator symbol is executed when you use
for...of with await, as before, as shown in the next listing.

for await (const chunk of dataStream) {
 //...
}

dataStream has a function-valued symbol property called Symbol.asyncIterator. As
of this writing, no native JavaScript APIs use this symbol, but Node.js ships with a few
libraries of its own for filesystem streams and HTTP handling. As you might expect,
the await on the loop call site must be matched with an async value (a promise)
returned by the iterator itself. Everything you learned about the Iterator applies,
with the small caveat that calls to next must return objects of {value, done} wrapped
in a Promise. The next listing shows a trivial example.

function delayedIterator(tasks) {
 return {
 next: function () {
 if (tasks.length) {
 const [value, time] = tasks.shift();
 return new Promise(resolve => {
 setTimeout(resolve, time, { value, done: false });
 });

Listing 8.25 Using async iteration with a Node.js stream object

Listing 8.26 Iterator object that emits values with a provided delay

Invokes the asyncIterator
function-valued property
of dataStream

Removes the first task from
the list. A task is nothing
more than a value with a
timeout value in the future.eturns a promise

that wraps an
Iterator tuple of

{value, done}

256 CHAPTER 8 Linear async flows
 } else {
 return Promise.resolve({
 done: true
 });
 }
 }
 };
}

It helps to see this iterator used directly first:

const tasks = [
 ['a', 500],
 ['b', 100],
 ['c', 200]
];

const it = delayedIterator(tasks);

await it.next().then(({ value, done }) => {
 value; // 'a'
 done; // false
});

Run it.next() two more times for tasks 'b', and 'c' to print, in that order. Finally,
the last call emits the done value:

await it.next().then(({ value, done }) => {
 value; // undefined
 done; // true
});

With Symbol.asyncIterator, we obtain the same result, shown in the following code.

const delayedIterable = {
 [Symbol.asyncIterator]: delayedIterator
};

for await (const value of asyncIterable) {
 console.log(value);
}

You can also take things up a notch by making next an async function:

function delayedIterator(tasks) {
 return {
 next: async function () {
 if (tasks.length) {
 const [value, time] = tasks.shift();
 return await delay(value, time);
 } else {

Listing 8.27 Hooking into async iteration using @@asyncIterator

Signals that the iterator
should stop, as there are
no more tasks to perform

Internally invokes
@@asyncIterator

257Top-level await
 return Promise.resolve({
 done: true
 });
 }
 }
 };
}

The sky’s the limit in terms of what you can do when you have full control (and under-
standing) of the iteration behavior of your objects, especially when you have physical
limitations such as bandwidth and amount of memory, which occur on slow networks
and mobile devices, respectively. Chapter 9 goes one step further so that you can see
how generators (and their async counterpart) blend with the iterator protocol. You
can not only model a finite amount of data, but also model potentially infinite streams
of data.

 So far, we’ve discussed how to handle asynchronous tasks directly through the
Promise APIs and through async/await. Most of the discussion centered on how data
propagates forward through a promise chain. In this chapter, I didn’t talk much about
error handling, mainly because the rules are nearly the same as those for typical
imperative code, and a lot of what we discussed about Promise#then applies uniformly
to Promise#catch, which is a nice design trait of promises.

8.6 Top-level await
Generally, every await must be matched with async, but there’s an exception. Some sce-
narios require you to initiate a call to load (await) something asynchronous as the first
thing you do. Examples are dynamically loading modules and dependencies up front,
such as internationalization/language bundles or a database connection handle.

 Through regular async/await syntax, if you wanted to begin asynchronous tasks
on script launch, you’d have to create an async context with a function and then
immediately invoke it. Here’s an example:

const main = async () => {
 await import(...);
}

main();

In chapter 6, we discussed Immediately Invoked Function Expressions (IIFEs), a pat-
tern that performs function declaration and execution directly at the same time. In
the same vein, we can shorten the preceding code by using an Immediately Invoked
Async Function Expression (IIAFE):

(async () => {
 await import(...);
})();

258 CHAPTER 8 Linear async flows
Top-level await cleans up this code so that you can use await on a task without having
to create an async function explicitly. Behind the scenes, you have one big async
function for the entire module:

await import(...);

In chapter 6, you saw an example of a dependency fallback from a module that loads
code dynamically:

const useNewAlgorithm = FeatureFlags.check('USE_NEW_ALGORITHM', false);

let { default: computeBalance } = await import(
 '@joj/blockchain/domain/wallet/compute_balance.js'
);

if (useNewAlgorithm) {
 computeBalance = (await
 import('@joj/blockchain/domain/wallet/compute_balance2.js')).default;
}

return computeBalance(...);

Top-level await is meant to work with ECMAScript Modules out of the box, so here’s
another good reason to start adopting that module format. This is understandable,
because top-level await would require special support to create an asynchronous con-
text for you automatically. (It helps to think of one big async function surrounding
the entire module.) If module A imports module B, and B contains one or multiple
await calls, A needs to wait until B finishes executing before executing its own code.
Naturally, there are concerns about blocking and waiting at a critical stage of the eval-
uation process. (If you want to know the intricate details of this process you can read
more about them at http://mng.bz/9Mwo.) As you’d expect, however, there are opti-
mizations, so the blocking that occurs only with a dependent module does not affect
loading other sibling dependencies. The event loop architecture schedules these tasks
properly and yields control to the main thread to continue loading other code, as it
would do with any asynchronous task. Nevertheless, developer education is key. As
with dynamic import, use these features only when absolutely necessary.

 As you can see, we’ve come a long way toward removing the issue of latency or time
from our code. We started with the incumbent callbacks, moved on to an API-driven
solution (promises), and finally saw an improvement of the language-level model via
async/await. Overall, these techniques are behaviorally equivalent, and are all in line
with JavaScript’s nonblocking, event-driven philosophy. Remember that programming
is three-dimensional: data, behavior, and time. Applications excel when data is local to
the behavior or the logic that we write. But in this modern, distributed world, this
problem is hardly the one you need to solve. Without the proper support of the host
language, programming can quickly become unwieldy. Promises (or async/await)

http://mng.bz/9Mwo

259Summary
collapse these dimensions (data, behavior, and time) so that we can reason about our
code as being two-dimensional, removing time from the equation.

 Promises have some downsides, however. For starters, you can’t cancel the execu-
tion of a promise in a standard way. Or should you? After all, a promise is meant to be
kept. Perhaps Future or Task would have been a better name. Nevertheless, third-
party libraries employ some form of internal cancellation token, but nothing has been
made standard. The TC39 committee seeks a general cancellation mechanism that
could apply to more than promises. You can find more information at https://github
.com/tc39/proposal-cancellation.

 To me, the biggest issue is that promises (async/await) are not lazy. In other
words, a promise executor will run regardless of whether there’s a handler function
down the chain. The other issue is that promises were designed to provide single
results; they can succeed or fail only once. After a promise settles, you’d need to cre-
ate a new one to request or poll for more data. There are many use cases for an API
that can deliver or push values to your handling code without you having to request
more explicitly. This pattern is called a stream, which is a convenient and elegant para-
digm for working with things like WebSockets, file I/O, HTTP, and user-interface
events (clicks, mouse moves, and so on). Chapter 9 takes asynchronous state manage-
ment to the next level.

Summary
 JavaScript is based on a single-threaded, event-driven architecture designed

for scale.
 A Promise is a standard, nearly algebraic data type used as an abstraction or

wrapper over some asynchronous task to provide a consistent programming
model that is location-agnostic. Promises free you from worrying about latency
and data-locality so that you can focus on the task at hand.

 Promises reuse the mechanics of callbacks and the event loop, but with much
better readability.

 ECMAScript 2020 proposes enhancements to the Promise API’s surface with
the addition of Promise.allSettled and Promise.any. Both composable oper-
ators allow you to handle multiple tasks at the same time.

 async/await offers a more familiar, imperative approach to promises that con-
vert promise chains to a sequence of statements.

 Async iterator introduces a new symbol called @@asyncIterator. You can use
this symbol to endow any object with the capability of looping, emitting its data
asynchronously. Node.js uses this symbol in its HTTP and filesystem modules,
among others.

 Top-level await takes advantage of the ESM system to automatically create an
encompassing async context over a module script, under which you can spawn
any number of await calls without having to create async functions explicitly.

https://github.com/tc39/proposal-cancellation
https://github.com/tc39/proposal-cancellation
https://github.com/tc39/proposal-cancellation

Streams programming
An Observable is a function that takes an observer and returns a function. Nothing
more, nothing less. If you write a function that takes an observer and returns a
function, is it async or sync? Neither. It’s a function.

—Ben Lesh

This last chapter brings together the most important techniques covered in this
book, including composable software as a whole, functional programming, mixin
extensions, and reflective and asynchronous programming. Here, you’ll learn how
they can all come together to support a computing model known as streams pro-
gramming. Streams provide an abstraction that allows us to reuse a single comput-
ing model to process any type of data source regardless of its size. Think about

This chapter covers
 Reviewing the Iterator/Iterable protocols

 Using generators to represent iterable sequences
of values over time

 Reviewing the push/pull models as well as
stream-based programming

 Using observables to create declarative,
asynchronous push streams
260

261
building a real-time data application, such as a chat widget. You could set up long poll-
ing to pull messages from a server periodically, perhaps using a Promise-based API
that you develop. Unfortunately, promises can deliver only a single value at a time, so
you may receive one or two message objects (or potentially thousands if you have a
chatty group), causing errors because you’ve exceeded the amount of data that can be
transmitted in a single request. The best strategy is to set up a push solution; your
application is notified when a new message is present and receives messages one at a
time or in small batches. Programming with streams gives you the right level of
abstraction to handle these use cases with a consistent API.

 We’ve all been coding with streams in one way or another without realizing it. The
flow of data between any piece of hardware, such as from memory to a processor or a
disk drive, can be considered to be a stream. In fact, these input and output streams
are used to read and write, respectively. Although this has been familiar for many
years, we’ve never truly considered the state among the components that connect our
applications—or that connect multiple applications—to be a stream.

 Think about the JavaScript code you write from day to day. For the most part, the
typical way to deal with state is to use a pull model. Pull occurs when a client originates
a request for some piece of data it needs. This process happens asynchronously when
reading from a database or a file, or querying an API. It can also happen synchro-
nously when calling a function or looping over some data structures in memory.

 The other side of the coin is the push model. With push, the client code isn’t
requesting data anymore; the server sends data to you. A push exchange may start
with an initial pull, but after the client and server interfaces are in agreement, data
can flow to clients as it becomes available—like new messages in your chat application.
You may have heard of the publish/subscribe model, which is an architecture for
these types of problems. A simple, useful analogy is to think of a callback function that
gets called multiple times during a single request.

 Push technology can make your application much more snappy and reactive. I’ll
come back to this notion of reactivity in section 9.3, because it’s an important one.
Some push examples that come to mind are server-sent events (SSE), WebSockets,
and the DOM’s event listeners. Imagine that instead of registering event handlers, you
have to set up a timer to see when the state of a button changes to clicked. Or suppose
that instead of getting notified when new message comes in, you need to explicitly
click the refresh button to download new messages. We’re not in the ’90s anymore.
When you know that data is available somewhere, you can issue a command to read it,
but what happens when you don’t know? It’s awkward to set up polling for data that
you don’t know will become available (if it ever does), not to mention inefficient.

 In chapters 7 and 8, I covered the concept of iterators. Here, I’ll continue talking
about this subject from a new angle: how it’s used to represent streams of data com-
bined with generator functions. Generators allow you to control the synchronous flow
of data coming out of an iterable object (array, map, object, and so on). Also, you can
emulate iterable data that can be computed on the fly.

262 CHAPTER 9 Streams programming
 We’ll continue building on these lessons and switch gears to asynchronous itera-
bles (async iterables, for short) and async generators used to compute sequences of
values over time. Async iterables represent push streams and are an efficient, optimal,
and memory-friendly way to read large amounts of asynchronous data (database,
filesystem, or HTTP) piece by piece.

 Although a push paradigm can sometimes be hard to understand, you’ll see that
using the same JavaScript constructs you’ve been learning about so far will make push
more approachable. I think you’ll find the stream pattern to be quite interesting and
enjoyable to code with, so I’ll end this chapter by looking at a new API that brings
data-agnostic, reactive programming to JavaScript: Observable. Observables provide a
single API surface to manage data flows independent of how data is generated and of
its size.

 First, let’s talk about the Iterable and Iterator protocols in JavaScript.

9.1 Iterables and Iterators
Simply put, an iterable is an object whose elements (or properties) can be enumer-
ated or looped over. As you learned in chapters 7 and 8, an iterable object defines its
own Symbol.iterator, used to control how these elements are delivered to the
caller. An iterator is the pattern or protocol that describes the structure of the itera-
tion mechanism. Languages are free to define their own mechanisms for this pur-
pose. In JavaScript, iteration is standardized. The following sections examine these
protocols in detail.

9.1.1 Iterable protocol

The iterable protocol allows you to customize the iteration behavior of your objects
when they appear inside a for...of construct or are used with the spread operator.
JavaScript has built-in iterable objects such as Array, Map, and Set. Strings are also iter-
able as an individual array of characters.

NOTE Despite having similar names, WeakSet and WeakMap are not iterable
(although they accept iterables in their constructors). In fact, neither extends
from its non-weak counterpart (Set and Map, respectively). These APIs solve
some interesting problems, but I don’t cover them in this book.

An iterable object (or any object from its prototype) must implement the function-
valued Symbol.iterator. Inside this function, this refers to the object being iterated
over, so that you have full access to its internal state and can decide what to send
during the iteration process. An interesting fact about iterables is that Symbol.iterator
can be a simple function or a generator function. (For more information on this topic,
see section 9.2.)

 An iterable by itself doesn’t do much without its iterator.

263Iterables and Iterators
9.1.2 Iterator protocol

The iterator is the contract that’s presented to the language runtime when iteration
behavior is required. JavaScript expects you to provide a next method to an object.
This method returns objects with at least two properties:

 done (Boolean)—Indicates whether there are more elements. A value of false
tells the JavaScript runtime to continue looping.

 value (any)—Contains the value bound to the loop variable. This value is
ignored when done is equal to true, and the sequence terminates.

If an object returned by Symbol.iterator does not abide by this contract, it’s consid-
ered to be malformed, and a TypeError occurs—JavaScript’s way of enforcing this par-
ticular protocol.

9.1.3 Examples

This section shows some examples of iterables, starting with our own Block class. As
you know, this class accepts an array of data objects, which could be Transaction
objects or any other type of object stored in the chain:

class Block {

 index = 0;
 constructor(index, previousHash, data = [], difficulty = 0) {
 this.index = index;
 this.previousHash = previousHash;
 this.data = data;
 this.nonce = 0;
 this.difficulty = difficulty;
 this.timestamp = Date.now();
 this.hash = this.calculateHash();
 }

 //...

 [Symbol.iterator]() {
 return this.data[Symbol.iterator]();
 }
}

If we created a block with a list of transactions, enumerating with for...of hooks into
the special symbol to deliver each transaction:

for (const transaction of block) {
 // do something with transaction
}

All the main model objects of our application (Blockchain, Block, and Transaction)
are iterable. This fact made it simple to create a generic validation method in the
HasValidation mixin, which extends all these objects with the same interface. In

264 CHAPTER 9 Streams programming
chapter 5, the algorithm used APIs such as flatMap and reduce, but it created addi-
tional arrays as the validation logic flowed through the elements of the blockchain. Iter-
ators loop over structure that’s already in memory. Also, we don’t have to reduce over all
the elements to find out whether a failure occurred. When we find the first failure, we
can break out of the algorithm early. Look at this snippet of code once more:

const HasValidation = () => ({
 validate() {
 return validateModel(this);
 }
});

function validateModel(model) {
 let result = model.isValid();
 for (const element of model) {
 result = validateModel(element);
 if (result.isFailure) {
 break;
 }
 }
 return result;
}

This implementation relies on model objects implementing Symbol.iterator. In our
case, the logic was simple, as the objects delegated to their internal data structure’s
iterator. To see how the protocols work, let’s implement a random-number generator
by using the iterator schema, as shown in the next listing.

function randomNumberIterator(size = 1) {

 function nextRandomInteger(min) {
 return function(max) {
 return Math.floor(Math.random() * (max - min)) + min;
 };
 }

 const numbers = Array(size)
 .fill(1)
 .map(min => nextRandomInteger(min)(Number.MAX_SAFE_INTEGER));

 return {
 next() {
 if(numbers.length === 0) {
 return {done: true};
 }
 return {value: numbers.shift(), done: false};
 }
 };
}

let it = randomNumberIterator(3);

Listing 9.1 Random-number generator using an iterator

Internal helper function
to compute the next
random integer

Creates a sized array
and fills it with
random numbers

Signals the
end of the
sequence Signals that there

are more numbers
to enumerate

265Iterables and Iterators
console.log(it.next().value); // 1334873261721158
console.log(it.next().value); // 6969972402572387
console.log(it.next().value); // 3915714888608040
console.log(it.next().done); // true

Notice that the object returned by randomNumberIterator is an object that conforms
to the iterator schema (as you can tell by the declaration of next), but it’s not itself an
iterable. To make it one, we can add Symbol.iterator in the next listing.

...
return {
 [Symbol.iterator]() {
 return this;
 },
 next() {
 if(numbers.length == 0) {
 return {done: true};
 }
 return {value: numbers.shift(), done: false};
 }
}

Now you can benefit from the seamless integration with for...of:

for(const num of randomNumberIterator(3)) {
 console.log(num)
}

This technique is powerful because the iterator protocol is data-agnostic; you can use
it to implement any kind of iteration. You can represent directory traversals, graph/tree
data structures, dictionaries, or any custom collection object with the simplicity of a
for...of.

 The iterable/iterator duo is ubiquitous in JavaScript, controlling how objects
behave with the spread operator:

[...randomNumberIterator(3)];

// [6035653145325066, 7827953689861025, 1325390150299500]

Native, built-in types are also iterables. The following listing shows that strings behave
the same way for arrays, maps, and sets. (You get the idea.)

"Joy of JavaScript"[Symbol.iterator]; // [Function: [Symbol.iterator]]

for(const letter of "Joy of JavaScript") {
 console.log(letter);
}

Listing 9.2 Making an object iterable with @@iterator

Listing 9.3 Strings implementing @@iterator

Produces different
numbers each time

Because the object already implements
next, it’s enough to return itself, making
it both an iterator and an iterable.

Logs all 17 characters
to the console

266 CHAPTER 9 Streams programming
Now, let’s be honest: you’ve probably never heard of a random-number iterator, but
you have heard of a random-number generator. Is there a difference? You will find out
in section 9.2, which covers generators.

9.2 Generators
A generator is a special type of function. Normally, when a function returns, the lan-
guage runtime pops that function off the current stack frame, freeing any storage allo-
cated for its local context. Generator functions work the same way but have a slight
twist: it seems as though its context sticks and resumes to return more values. In this
section, we’ll review what generator functions are, how to use them to create iterables
that can send new values from thin air, and how to use them to create async iterables.

9.2.1 To return or to yield

A generator is a factory function of iterators. First, you can define a generator func-
tion by placing an asterisk (*) after the function keyword

function* sayIt() {
 return 'The Joy of JavaScript!';
}

or before a method name:

class SomeClass {
 * sayIt() {
 return 'The Joy of JavaScript!';
 }
}

These functions aren’t too useful, but are useful enough to show that generators look
like any regular functions. So what’s with the special syntax? There’s a twist in the
return value. Run this function to see what you get:

sayIt(); // Object [Generator] {}

As you can see, that special syntax augments the return value with an object called
Generator, not a string, as the normal function would have. Syntactically, this process
is similar to how an async function augments (or wraps) the value in a Promise.

 Like the simple randomNumberIterator example, Generator is itself an iterable
and an iterator; it implements both protocols. Therefore, to extract its value, we need
to call next:

sayIt().next(); // { value: 'The Joy of JavaScript!', done: true }

Now you can recognize the shape of the iterator protocol. Simply using an iterator
of one value (done: true) is not that interesting, however. The function* syntax is

267Generators
there so that you can produce many values, via a process called yielding. Consider
this variation:

function* sayIt() {
 yield 'The';
 yield 'Joy';
 yield 'of';
 yield 'JavaScript!';
}

const it = sayIt();
it.next(); // { value: 'The', done: false }
it.next(); // { value: 'Joy', done: false }
 ...

NOTE Currently, there’s no support for generator functions using lambda
syntax. This lack of support may seem to be a flaw in the design, but it’s
not: lambda expressions are really meant to be simple expressions, and
most are one-liners. It’s rare to have generator functions be that simple.
There is, however, a proposal to include support for generator arrow func-
tions: http://mng.bz/yYWq.

And, of course, because Generator implements Symbol.iterator, you can stick it
inside a for...of expression:

for(const message of sayIt()) {
 console.log(message);
}

In sum, a generator is nothing more than a simple way to create an iterator. Genera-
tors and iterators work seamlessly. The code looks like it’s invoking the same function
many times and somehow resuming where it left off, but it’s only a function. Behind
the scenes, you’re consuming the iterable object that the function returns, and yield
pushes new values into the iterator.

9.2.2 Creating iterable objects

In this section, you’ll see how to integrate iterables to enhance the domain model of
the blockchain application. You can add a generator helper function to Blockchain
that can emit as many fully configured empty blocks as you want, for example. You can
use this function to create chains of any size and perhaps use them for testing and
running simulations.

 The next listing defines a simple newBlock generator. The Blockchain class is a bit
complex at this point, so I’ll show only the pertinent bits.

class Blockchain {
 #blocks = new Map();

Listing 9.4 Custom generator function

http://mng.bz/yYWq

268 CHAPTER 9 Streams programming
 ...

 * newBlock() {
 while (true) {
 const block = new Block(
 this.height(),
 this.top.hash,
 this.pendingTransactions
);
 yield this.push(block);
 }
 }
}

The caller code calls newBlock 20 times to produce 20 new blocks, making the total
height of the chain 21 (remember to count the first-ever genesis block), as shown in
the following listing.

const chain = new Blockchain();
let i = 0;
for (const block of chain.newBlock()) {
 if (i >= 19) {
 break;
 }
 i++;
}
chain.height(); // 21

Furthermore, the frictionless integration between generators and iterators makes
using the spread operator and its counterpart destructuring assignment a terse, idi-
omatic way to read properties from any custom object. We can implement naive
pattern-matching expressions on algebraic data types (ADTs) such as Validation,
implemented in chapter 5. First, let’s make Validation iterable and use generators to
return its Failure and Success branches, respectively. This ADT is biased to the right,
so the Success branch results from the second call to yield; otherwise, you can
reverse this order. Symbol.iterator is implemented like this:

class Validation {
 #val;

 ...

 *[Symbol.iterator]() {
 yield this.isFailure ? Failure.of(this.#val) : undefined;
 yield this.isSuccess ? Success.of(this.#val) : undefined;
 }
}

Listing 9.5 Using generators to create an arbitrary amount of new blocks

Uses the generator syntax
on a function method

Looks like an infinite loop but is not. The
generator function is able to “pause”
its execution on yield, so the runtime
doesn’t keep executing infinitely.

Pushes a new block to
the chain and returns it

Stops after creating
20 blocks

20 new blocks plus
genesis = 21

269Generators
Choice ADTs, such as Validation, can activate only one branch at a time and omit the
other. Those destructuring assignment statements look like the next listing.

const [, right] = Success.of(2);

right.isSuccess; // true
right.get(); // 2

const [left,] = Failure.of(new Error('Error occurred!'));

left.isFailure; // true
left.getOrElse(5); // 5

Consider some simple use cases for both branches. Suppose that you’re calling some
validation function. For the Failure case, you could use destructuring with default
values as an alternative to calling left.getOrElse(5):

const isNotEmpty = val => val !== null && val !== undefined ?
 Success.of(val) : Failure.of('Value is empty');

const [left, right = Success.of('default')] = isNotEmpty(null);

left.isFailure; // true
right.get(); // 'default'

As you can see, iterators and generators (together with symbols) unlock idiomatic
coding patterns. When you need to control how an object emits its own properties,
these features make your code much more expressive and simpler to read.

 As JavaScript supports async iterables by making next return promises, it also sup-
ports async generators, as we’ll discuss in the next section.

9.2.3 Async generators

An async generator is like a normal generator, except that instead of yielding values, it
yields promises that resolve asynchronously. Hence, an async generator is useful for
working with Promise-based APIs that allow you to read data asynchronously in
chunks, such as the fetch API in browser (which is a mixin, by the way) or the Node.js
built-in “stream” library. In the next example, you’ll see the difference between work-
ing with a normal async function and an async generator function.

 To obtain an async generator, combine all the keywords we’ve covered in this chap-
ter into a single function signature:

async function* someAsyncGen() {

}

The results returned from the generator are promises, so you need to use for await
...of syntax to consume it. The next listing shows a function that uses async iteration.

Listing 9.6 Using destructuring assignment to extract success and error states

Destructuring
assignment that
ignores the left
result

Destructuring
assignment
that ignores
the right result

270 CHAPTER 9 Streams programming
async function countBlocksInFile(file) {
 try {
 await fsp.access(file, fs.constants.F_OK | fs.constants.R_OK);

 const dataStream = fs.createReadStream(file,
 { encoding: 'utf8', highWaterMark: 64 });

 let previousDecodedData = '';
 let totalBlocks = 0;

 for await (const chunk of dataStream) {
 previousDecodedData += chunk;
 let separatorIndex;
 while ((separatorIndex = previousDecodedData.indexOf(';')) >= 0) {
 const decodedData =
 previousDecodedData.slice(0, separatorIndex + 1);

 const blocks = tokenize(';', decodedData)
 .filter(str => str.length > 0);

 totalBlocks += count(blocks);

 previousDecodedData =
 previousDecodedData.slice(separatorIndex + 1);
 }
 }
 if (previousDecodedData.length > 0) {
 totalBlocks += 1;
 }
 return totalBlocks;
 }
 catch (e) {
 console.error(`Error processing file: ${e.message}`);
 return 0;
 }
}

This function returns a count of the blocks read from a file. A more helpful, useful
function would return the block objects themselves so that you could do much more
than count. Maybe you could validate the entire collection of blocks.

 The following listing shows a slightly refactored version that removes the counting
bits. Also, it uses a generator that yields each JSON object describing each block. Let’s
call this function generateBlocksFromFile.

async function* generateBlocksFromFile(file) {
 try {
 await fsp.access(file, fs.constants.F_OK | fs.constants.R_OK);

Listing 9.7 Using async iteration to count the blocks in a file

Listing 9.8 Async generator that sends blocks read from a file

dataStream is an async
iterable object, which means
that every chunk of data is a
value in the shape of the
iterator protocol, wrapped
by a promise.

async function* creates
an async iterator.

271Generators

p

 const dataStream = fs.createReadStream(file,
 { encoding: 'utf8', highWaterMark: 64 });

 let previousDecodedData = '';

 for await (const chunk of dataStream) {
 previousDecodedData += chunk;
 let separatorIndex;
 while ((separatorIndex = previousDecodedData.indexOf(';')) >= 0) {

 const decodedData = previousDecodedData.slice(0,
 separatorIndex + 1);

 const blocks = tokenize(';', decodedData)
 .filter(str => str.length > 0)
 .map(str => str.replace(';', ''));

 for (const block of blocks) {
 yield JSON.parse(block);
 }
 previousDecodedData = previousDecodedData.slice(
 separatorIndex + 1);
 }
 }
 if (previousDecodedData.length > 0) {
 yield JSON.parse(previousDecodedData);
 }
 }
 catch (e) {
 console.error(`Error processing file: ${e.message}`);
 throw e;
 }
}

Now the counting logic becomes extremely trivial, as the next listing shows.

let result = 0;
for await (const block of generateBlocksFromFile('blocks.txt')) {
 console.log('Counting block', block.hash);
 result++;
}
result; // 3

Again, the beauty of this change is that we can do much more than count; we can also
validate each block as it’s being generated. This process is efficient because we don’t
have to read the entire file at the same time, but process it as a moving window of
data. Working with data this way is known as a stream.

 Suppose now that we want to use this function to validate all the blocks in the
chain. Blockchain creates its own genesis block upon construction, so the first thing
we’ll do is skip the first block that comes in. Next, we’ll convert the JSON object

Listing 9.9 Using generateBlocksFromFile as an async iterator

Yields all
arsed blocks

as objects

Each call to the generator
pulls out a new block object

from the file stream.

272 CHAPTER 9 Streams programming
representation of a block to a Block object that’s added to a chain; this process is called
hydration. The validation logic checks whether a block is positioned properly in a chain.
Finally, it calls validate mixed from HasValidation. The test file I use in the repository
(blocks.txt) has three blocks, so we’ll be validating only the remaining two. All the logic
in the next listing is shown in figure 9.1.

 let validBlocks = 0;
 const chain = new Blockchain();
 let skippedGenesis = false
 for await (const blockData of generateBlocksFromFile('blocks.txt')) {
 if (!skippedGenesis) {
 skippedGenesis = true;
 continue;
 }
 const block =
 new Block(blockData.index, chain.top.hash, blockData.data,
 blockData.difficulty);

 chain.push(block);

 if (block.validate().isFailure) {
 continue;
 }
 validBlocks++
 }

 console.log(validBlocks) // 2

The diagram in figure 9.1 captures this flow at a high level. As you can see, two gener-
ator functions are at work. The first function calls fs.createReadStream, and the sec-
ond function calls generateBlocksFromFile, which uses the first function to deliver
its own data.

 In this section, we continued to build on the lessons of chapter 8 with more asyn-
chronous capabilities. We discussed how to use the (async) iterator protocol, symbols,
and generator functions to create iterable objects. These objects can enumerate their
state upon request when they become the subject of a simple for loop.

NOTE It’s worth mentioning that we haven’t discussed other use cases involv-
ing generators, such as pushing values into generators and linking generator
functions. Generators are functions, so you could return a generator from
another or accept a generator as an argument. These techniques can be used
to solve a complex class of problems that are beyond the scope of this book.
Check this link to find out about these other use cases: http://mng.bz/j45p.

Async generator functions can yield values asynchronously, like emitting events.
When an event source sends lots of values in a sequence, this sequence is also called
a stream.

Listing 9.10 Validating a stream of blocks generated from a file

Validation of each block assumes
that the blocks are part of a chain.

Skips the first block in the test file
because it’s a genesis block from a
different chain instance

Blocks need to be pushed
into a chain for validation.

Validates each block by using
HasValidation#validate

http://mng.bz/j45p

273Working with data streams
9.3 Working with data streams
What do objects of String, Array, Map, and a sequence of WebSockets events have in
common? In a typical programming task, not much. When we’re talking about a
stream of data, at a fundamental level, however, these types of objects can be treated
the same way. In fact, this consistent programming model that allows you to work
across data sources makes streams necessary. Some real-world examples in which
streams are compelling include

 Interacting with multiple asynchronous data sources (REST APIs, WebSockets,
storage, DOM events, and others) as a single flow

 Creating a pipeline that applies different transformations to the data passing
through it

 Creating a broadcast channel in which multiple components can be notified of
a particular event

Block

TX
From

To

TX
From

To

Block header

Block

TX
From

To

TX
From

To

Block header

blocks.txt

Raw file chunks

JSON JSON JSON

generateBlocksFromFile <Generator> {
[Symbol.iterator]: () {

}

}

fs.createReadStream
fs.ReadStream <Generator> {

[Symbol.iterator]: () {

}

}

Collect raw block JSON objects.

Parse into JS objects (blockData).

Genesis

for await (const blockData of generateBlocksFromFile) {

}

Skipped

Validated Validated

validBlocks = 2

Figure 9.1 The two generator functions. One reads a file and yields binary chunks of data. The
other processes each raw block, creates Block objects from them, validates each one, and tallies
the result.

274 CHAPTER 9 Streams programming
In situations like these, in which every single interaction is asynchronous and part of
the same flow, using async generators to wrap every action is a daunting task, and the
callback pattern won’t scale well to this level of complexity.

 In this section, we’ll learn the basics of streams and the APIs needed to represent
them. JavaScript’s Observable API provides the necessary interfaces to build great
reactive abstractions to process data from any push-based data sources. By the end of
this section, you’ll know how to transform an object into a stream so that you can man-
age its data through chains of Observable objects. You’ll understand how any com-
plex data source can be abstracted and processed as though it were a simple collection
of events.

9.3.1 What is a stream?

To understand this concept, you must first understand how data arrives or is con-
sumed by an application. Generally speaking, data is push or pull. In both cases,
you have a producer (that creates the data) and a consumer (that subscribes to
that data).

 In a pull system, the producer, which could be as simple as a function, doesn’t
know how or when data is needed. So the consumer must pull from (or call) the pro-
ducer. On the other hand, in a push system, the producer is the one in control of
when an event is sent (a button was clicked, for example), and the consumer (sub-
scriber) has no idea when it will receive said event. We say that the consumer reacts to
the event (figure 9.2).

Table 9.1 summarizes pull, push, and the JavaScript features typically used in those cases.

Table 9.1 JavaScript features to handle push and pull data

Single Multiple

Pull Function Symbol.iterator

Push Promise Symbol.asyncIterator | stream

Request for data

Consumer ProducerPull

Respond with data

Subscribes

Consumer ProducerPush

Unsubscribes

Publish data

Figure 9.2 The difference
between pull and push. With pull,
the consumer must always initiate
a request for data. With push, when
the consumer subscribes, the
producer sends data as it becomes
available, stopping when the
consumer unsubscribes or when
there’s no more data to send.

275Working with data streams
The pull techniques in table 9.1 are simple to understand. Pull happens when a func-
tion is invoked or an iterator’s next is called many times. A simple push scenario, by
contrast, occurs when asynchronous values are represented with a Promise object.
Here, the promise (the producer) controls when the event will be emitted, abstracting
this logic from a consumer. The consumer becomes the handler function passed to
next. We can say that the function subscribes to the promise. If a promise sets a time-
out function to three seconds to resolve, for example, its value is emitted three sec-
onds from the last event handled by the event loop. The producer knows and is in
control of emitting this value.

 In table 9.1, a promise represents a single push, whereas an async generator can
emit multiple values with different time functions. Promises and async generators are
in full control of the rate at which these events will be emitted. The for await...of
loop acts as a permanent subscription to both of these data sources behind the scenes.
You can imagine the async generator as being the producer, which will emit its values
at its own convenience, and the async iterator as being the consumer. Recall how list-
ing 9.8 sets up a data stream:

const dataStream = fs.createReadStream(file,
 { encoding: 'utf8', highWaterMark: 64 });

Later, the code consumes that data stream, using for await...of.
 Now let’s raise the level of abstraction with streams. Streams solve the same prob-

lem, but in a way that makes it easier to reason about. A stream is a sequence of one or
infinitely many pieces of data, called events. In this context, the word event does not
refer only to a mouse drag or button click; it’s used in the general sense to mean any
piece of data. An event is some value (synchronous or asynchronous) that gets emit-
ted over time by some source (event emitter, generator, list, and so on) and handled
by a subscriber or observer.

 As streams are sequences of values over time, they can nicely wrap over any producer,
manifesting as a single string or even a complex async generator. On the consuming
end, we can abstract over them by using for await...of via an object known as a
Subscription. Subscriptions are like iterators in that you can call them as many times as
you want to notify them when data becomes available, such as a call to next. With a
stream, we talk about subscribers, not consumers. To facilitate building up this abstrac-
tion, let’s warm up by creating a streamable object using arrays in the next section.

9.3.2 Implementing a streamable array

Now that you understand the basics of a stream, let’s come back to the part of listing 9.8
that declares the data stream and study it more closely:

const dataStream = fs.createReadStream(file,
 { encoding: 'utf8', highWaterMark: 64 });

The Node.js API fs.createReadStream returns an object of fs.ReadStream, which in
turn extends from stream.Readable.

276 CHAPTER 9 Streams programming
If you peek at this API documentation, two properties stand out for the purposes of
this chapter: an on method that emits the 'data' event and the Symbol.asyncItera-
tor method. Here’s an example:

dataStream.on('data', chunk => {
 console.log(`Received ${chunk.length} bytes of data.`);
});

This interface suggests that this object is both an async iterable and an EventEmitter.
I haven’t covered event emitters in this book, but I’ll review the basics quickly to sup-
port the examples in this chapter. An EventEmitter is an API that allows you to separate
the creation of some object from its use—a rudimentary form of publish/subscribe.
The following listing shows an example.

const myEmitter = new EventEmitter();

myEmitter.on('some_event', () => {
 console.log('An event occurred!');
});

myEmitter.emit('event');

By combining EventEmitter and Symbol.asyncIterator, we can implement a real
push solution. The emitter in this case is a nice technique for separating the method
that handles pushing new data (such as push) from the method that handles a sub-
scriber to this data (such as subscribe). Arrays, for example, are pull data structures
because they have functions and properties to pull its data (indexOf and indexing,
respectively) as well as to implement Symbol.iterator for pulling multiple values
(refer to table 9.1). If you want to run some code in response to a new value (a process
called reacting), you must set up some kind of long polling solution that peeks at the
status of the array at a time interval, which is not the most optimal solution. For effi-
ciency, let’s invert this flow. Instead of picking at the data, we’ll subscribe to it so that it
lets us know when it has a new value (a process called notifying).

 Let’s extend from Array with push semantics by configuring an internal Event-
Emitter that fires an event every time a new value is added. Consider a class called
PushArray that exposes two new methods to enable subscription: subscribe and

Node.js streams
The stream module is a relatively new, built-in Node.js library for working with read/
write streams of data. Stream objects come equipped with Symbol.asyncIterator
properties to make consuming its data easy. You can find more information about
this library at https://nodejs.org/api/stream.html.

Listing 9.11 Basic use of an EventEmitter

Consumer of the data (subscriber).
This process is similar to handling,
say, an onClick event.

Producer of
the data

https://nodejs.org/api/stream.html

277Working with data streams

Rem
sub
Any
pus

wi
unsubscribe. The subscribe method accepts an object that implements a next(value)
method, shown in the next listing.

class PushArray extends Array {

 static EVENT_NAME = 'new_value';

 #eventEmitter = new EventEmitter();

 constructor(...values) {
 super(...values);
 }

 push(value) {
 this.#eventEmitter.emit(PushArray.EVENT_NAME, value);
 return super.push(value);
 }

 subscribe({ next }) {
 this.#eventEmitter.on(PushArray.EVENT_NAME, value => {
 next(value)
 });
 }

 unsubscribe() {
 this.#eventEmitter.removeAllListeners(PushArray.EVENT_NAME);
 }
}

const pushArray = new PushArray(1, 2, 3);

pushArray.subscribe({
 next(value) {
 console.log('New value:', value)
 // do something with value
 }
});
pushArray.push(4);
pushArray.push(5);

pushArray.unsubscribe();

pushArray.push(6);

Let’s closely examine the call to subscribe in this example. The idea of a subscriber is
central to the stream paradigm, which always requires two actors: a producer and a
subscriber. When the number 4 is pushed to the array, the event emitter fires and
immediately notifies the subscriber (figure 9.3).

 The call to subscribe accepts an object with the shape shown in listing 9.13.

Listing 9.12 Subclass of Array that fires events when a new elements is pushed

Emits the
new value
pushed

Uses destructuring to
extract the next method
from the object passed in

When the emitter fires a
new value, it’s pushed
to the subscriber.

oves all
scribers.
 further
h events
ll not be
emitted.

Prints 'New value: 4' and
'New value: 4' to the console.
Array now has 1,2,3,4, 5.

Unsubscribes from the
push array object

Subscriber does not get
notified of the event. Array
now has 1,2,3,4,5, 6.

278 CHAPTER 9 Streams programming
{
 next: function (value) {
 // do something with value
 }
}

This object is called an observer, and it’s no coincidence that the name of the method
is next. Observers align not only with the Iterable/Iterator protocols, but also with the
protocol behind a push generator, which I’m omitting in this book to keep the discus-
sions brief. If you follow this topic more closely, you’ll learn that generators can not
only yield values, but also allow you to push values back. Here’s a link if you want to
read more about the topic: http://mng.bz/WdOw.

 Hence, the shape of the observer with the next(value) method has the sole pur-
pose of keeping this protocol and makes the transition to stream-based programming
fluid. The JavaScript API for representing a stream is known as Observable.

9.4 Welcoming a new native: Observable
At the time of this writing, a proposal slowly moving through the ranks may dramati-
cally change the way we code on a day-to-day basis (https://github.com/tc39/proposal
-observable). Some people say it has already changed the way we use third-party,
stream-oriented libraries, RxJS being my favorite. This project has deeply penetrated
the Angular, Vue, React, Redux, and other web communities.

 In this section, we’ll discuss the current status of the Observable API. This API sup-
ports the reactive streams paradigm, which creates a layer of abstraction over any data
type and size, regardless of whether the mechanism is push or pull or whether data
arrives synchronous or asynchronously.

 You may have used reactive programming through RxJS if you’ve worked with
frameworks such as Angular and React or state management libraries such as Redux.
If you haven’t, at a high level, observables have these two qualities, which I’ll build on
in the following examples:

Listing 9.13 Subscribers accepting objects with a next method

New values

Producer

Subscriber PushArray

Unsubscribes

Publish data

4

5

45

Subscribes

Figure 9.3 The basic flow of
a push object with producer
and subscriber

Using property syntax instead
of shorthand, because it’s
more descriptive

http://mng.bz/WdOw
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable

279Welcoming a new native: Observable
 Data propagation—Data propagation naturally follows the pub/sub model. You
identify a publisher (known as the source), which can be a generator or a sim-
ple array. The data stream propagates or flows in a single direction all the way to
a subscriber. Along the way, you can apply business logic that transforms data
according to your needs.

 Declarative, lazy pipeline—You can statically represent the execution of a stream
regardless of publisher and subscriber, and pass it around like any other object
in your application. Unlike promises, an observable object is lazy, so until a sub-
scriber subscribes, nothing runs.

Observable streams can be hard to understand; they require strong JavaScript skills
and a solid understanding of the value of composable code. Fortunately, I’ve covered
all these topics (and more) in this book, and I’ll reuse a lot of what you’ve already
learned as I discuss how to use this API.

 The following list summarizes these concepts (and if you skipped any of them, I
highly recommend that you go back to the chapters that covered them to read
about them):

 Observables are compositional objects, so you can combine them or create new
observables from existing ones. You’ll create a mixin that extends the base func-
tionality of Observable’s prototype. Object composition and mixin extension
are covered in chapter 3.

 Observable operators are pure, composable, curried functions. Any side effects
should be carried out by subscribers. Pure functions, composition and currying
are explained in chapter 4.

 The design of the Observable API draws on the design of ADTs, particularly in
its use of map. Chapter 5 shows how to design your own ADT and how to imple-
ment universal protocols such as Functor.map and Monad.flatMap.

 Part of the specification defines a new function-valued built-in symbol called
Symbol.observable. Objects that implement this special symbol can be passed
to the Observable.from constructor. Implementing custom symbols and using
built-in symbols are covered in chapter 7.

 An observable models a unidirectional, linear stream of data. Chapter 8 dis-
cusses how to create chains with promises to streamline and flatten asynchro-
nous flows and to make them easier to reason about.

With all the foundational concepts behind us, let’s dive into an observable stream in
the next section.

9.4.1 What is an Observable?

In this section, we’ll learn what an Observable is and unpack its main components. As
a simple example, consider the snippet of code in the next listing.

280 CHAPTER 9 Streams programming
const obs$ = Observable.of('The', 'Joy', 'of', 'JavaScript');

const subs = obs$.subscribe({
 next: ::console.log
});

subs.unsubscribe();

Can you guess what will happen? This listing is the simplest possible example that uses
observables. Notice the resemblance between this code and the PushArray class. If
you guessed that it prints each individual word to the console, you nailed it! But how
did you arrive at this conclusion? What assumptions did you make?

 An Observable object is designed to model a lazy, unidirectional, push-based data
source (such as streams).

NOTE It’s worth pointing out that observables are different from the technol-
ogy known as Web Streams (https://streams.spec.whatwg.org). Although the
technologies have some of the same goals, observables offer an API to wrap
over any data source, which could be a Web Stream but doesn’t have to be.

You can think of data as being a river that flows downstream from some source to a
destination. The conduit or the context in which this flow happens is the Observ-
able. Along the way, the flow changes course, speed, and temperature until it arrives
at its destination. These points of inflexion are known as operators, which I haven’t
shown yet.

 There’s no point in transmitting any data if there’s nobody on the other side to
receive it, however, which is why observables are lazy and wait for the call to subscribe
to set things in motion.

 The Observable constructor Observable.of lifts an iterable object and returns a
Subscription object with the shape shown in the next listing.

const Subscription = {
 unsubscribe () {
 //...
 }
}

This simple interface declares a single unsubscribe method. The logic of this method
is specific to how the data is being generated. If the data is sent intermittently by
setInterval, for example, unsubscribe takes care of clearing the interval.

 On the other side of the river, the Observer object is a bit more complex than a reg-
ular iterator but behaves in much the same way. The next listing shows the contract.

Listing 9.14 Creating and subscribing to an Observable

Listing 9.15 Subscription declaring a method to unsubscribe from the stream

Logs every word to the console
and uses the unary form of the
bind operator to pass a properly
bound console.log function

Used to cancel the subscription
(the stream) at any time

The body of this function is
supplied by the producer of
the data.

https://streams.spec.whatwg.org

281Welcoming a new native: Observable
const Observer = {
 next(event) {
 //...
 },
 error(e) {
 //...
 },
 complete() {
 //...
 }
}

Together, Observable, Observer, and Subscription make up the skeleton framework
being standardized by TC39. Libraries such as RxJS extend this framework to provide
a programming tool belt to handle the types of tasks at which streams excel. In the
next section, we’ll use this interface to implement more examples with observables.

9.4.2 Creating custom observables

The static constructor functions Observable.{of, from} can be used to wrap or lift most
JavaScript built-in data types (such as strings and arrays) or even another Observable.
This interface is a basic one. From here, you can instantiate a new, empty Observable
directly to define your own custom streams. This technique is used in case you want to
wrap over, say, a DOM event listener and emit events through the Observable API.
Perhaps you have created some EventListener objects that you want to combine. The
next listing shows an Observable that emits random numbers every second and the
subscriber that handles each event.

function newRandom(min, max) {
 return Math.floor(Math.random() * (max - min)) + min;
}

const randomNum$ = new Observable(observer => {
 const _id = setInterval(() => {
 observer.next(newRandom(1, 10));
 }, 1_000);

 return() => {
 clearInterval(_id);
 };
})

const subs = randomNum$
 .subscribe({
 next(number) {
 console.log('New random number:', number);
 },

Listing 9.16 Shape of the Observer object

Listing 9.17 Using observables to emit random numbers

Receives each event
in the stream

Triggered when an exception occurs
somewhere along the observable

Called when there are no more
values to emit; not called on error

Returns a random
number between
min and max

Uses the new keyword to
instantiate an Observable
with a custom observer

A SubscriptionFunction.
The body of this function
is executed when calling
subs.unsubscribe.

282 CHAPTER 9 Streams programming
 complete() {
 console.log('Stream ended');
 }
 });

 // some time later...

 subs.unsubscribe();

In this snippet of code, randomNum$ initially holds an inert Observable object waiting
for a subscriber. The Observable constructor has not yet begun executing. Also, you
may have noticed the dollar sign ($) used at the end of the variable name. No jQuery
is being used here; $ is a convention indicating that this variable holds a stream. Later,
the call to subscribe kicks off the stream so that new random numbers print to the
console. This process happens infinitely until clients call unsubscribe. So-called mar-
ble diagrams have become a popular way of illustrating how events are emitted through
an observable, as shown in figure 9.4.

Each marble indicates an event that happens over time—in this case, a new random
number emitted every second. In place of a random number every second, you could
have events such as mouse coordinates, enumerations of the elements of an array,
chunks of an HTTP response, filenames in a directory traversal, keystrokes, and so on.

 At this writing, the observable specification defines rules and a skeleton only for
Observable and Subscriber. In the real world, you’ll need much more. Without a
library like RxJS, you can’t do much. You need functions that can operate on the data.
These functions are called operators.

9.4.3 Building your own reactive toolkit

When data starts flowing through a stream, an operator allows you to process that
stream before the data reaches a subscriber. An operator represents the twists and
turns. The current proposal doesn’t define any built-in set of operators, but it does
define two important rules about observables that we must follow: laziness and compo-
sition. Operators extend observables and capture the business logic of your application.
In this section, we’ll create our own mini RxJS library and learn how to implement our

1 sec

Figure 9.4 The unidirectional flow of an observable is depicted as
an arrow. You can think of the producer and subscribers (not shown
but implied) as being on the left and right sides, respectively.
Events (marbles) move across the observable.

283Welcoming a new native: Observable
own custom operators that extend the Observable prototype. If you follow the code in
GitHub, all operators will be defined in a module called rx.js.

 The way we’re going to design these operators is in line with the patterns and prin-
ciples of ADTs. Comparing Observable with Validation, you can see a static lifting
operator called Observable.of (like Validation.of). And although Observable doesn’t
declare any methods other than subscribe, the proposal makes it clear that observ-
ables are composable objects. Do you recall the map/compose correspondence dis-
cussed in chapter 4? What’s more compositional than a map operator? By design, this
higher-order function gives us the ability to transform the data flowing through the
observable pipeline. You can use this function to add a timestamp to each event emit-
ted, remove fields from the event object, compute new fields on the fly, and so on.

MAP OPERATOR

The map operator applies a given function, fn, to each value emitted by an observable
source. This behavior matches the behavior of any ADT and even simple arrays. I’ve
discussed map at length in this book, so I’m not going to review the laws that oversee it.
Let’s cut straight to the chase and implement Observable’s version of map.

 Remember from chapter 5 that map always returns a new copy of the derived con-
structor. For Observable, you need to make sure that the source’s (the calling observ-
able’s) observer and the new observer are linked so that one’s next feeds into the
other’s next. Think about this concept for a moment: it’s function composition all
over again, whereby one function’s return value is connected to the input of the next.
This linkage creates data propagation, and the goal of every operator is to allow data
to continue flowing from a producer downstream to a consumer.

 Let’s define map as a standalone operator and then bind it to Observable.prototype
to enable the fluent pattern of ADTsin the next listing.

const map = curry(
 (fn, stream) =>
 new Observable(observer => {
 const subs = stream.subscribe({
 next(value) {
 try {
 observer.next(fn(value));
 }
 catch (err) {
 observer.error(err);
 }
 },
 error(e) {
 observer.error(e);
 },
 complete() {
 observer.complete();
 }
 });

Listing 9.18 Custom map operator

Currying is used
to partially bind the
mapping function to
any stream. Currying
will simplify the design
of the operators to
allow for standalone
use as well as instance
methods.

map is structure-preserving and immutable,
so it returns a new Observable whose
subscription is tied to the source.

Subscribes to the
source stream

Per the definition of map,
applies the given function to
each value emitted by the
source observable and notifies
observers of any errors

Propagates any errors that
occurred from the source
observable downstream

Emits the
complete event

from the source
observable

284 CHAPTER 9 Streams programming
 return () => subs.unsubscribe();
 });
);

From the point of view of an operator function, the producer is the stream object that
came before it, and the subscriber the observer object that’s passed in (with a next
method). Every operator is like map in that it creates a new Observable that subscribes
to the previous one with an Observer, building a downstream chain. Every event is
propagated downstream by calling the observer’s next method along the way until it
reaches the final observer: the subscriber. The same thing happens for error and the
final complete event. By contrast, calls to unsubscribe bubble upstream, canceling
every observable object in the chain.

 The point of making map a standalone function is merely a design decision that
resembles what you would see in a project such as RxJS. This decision gives you the
flexibility to use map as a standalone function or as a method, which is how the latest
versions of RxJS export it.

 The next listing shows a simple use case that applies a square function over each
number emitted by a stream by using the standalone version of map.

import { map } from './rx.js';

const square = num => num ** 2;

map(square, Observable.of(1, 2, 3))
 .subscribe({
 next(number) {
 console.log(number);
 },
 complete() {
 console.log('Stream ended');
 }
});

The marble diagram in figure 9.5 illustrates this concept.

Listing 9.19 Using observables to map a function over a number sequence

Reading marble diagrams
A marble diagram is closely tied to the Reactive Extension (Rx) community to explain
how an operator works. We’re going to be using a small subset of this notation. The
only component of a marble diagram to understand for the purposes of this book is
that a marble represents an event or a piece of data. The horizontal arrow represents
time, and the space between marbles is the time between emissions, which can be
synchronous (immediate) or asynchronous. The operator function (large rectangles)

Returns this subscription’s
SubscriptionFunction so that a call
to unsubscribe downstream cancels
all the midstream observables

Prints 1, 4, and
9, followed by
"Stream ended"

285Welcoming a new native: Observable

Building on this example, the next listing and figure 9.6 showcase the composability
of streams.

const add = curry((x, y) => x + y);

const subs = map(square, map(add(1), Observable.of(1, 2, 3)))
 .subscribe({
 next(number) {
 console.log(number);
 },
 complete() {
 console.log('Stream ended');
 }
 });

acts on a specific marble and produces a new one if needed, placed on a new timeline
arrow. If the operation is synchronous, it maps to the same point in time; otherwise,
it shifts forward in time, depending on the operator. The map operator here is instant,
for example, whereas an operator like delay (not covered) can shift the event by
some provided time period. If you want to read more about this tool, you can find good
resources at https://rxmarbles.com and http://mng.bz/8NzB.

Listing 9.20 Composing observables

map(square)

map(square)

square: →

Source events (a sequence of numbers)
are wrapped using an Observable.

Result events
map is a function that internally
observes each event, squares the
value, and emits squared values
into a new Observable.

2

Figure 9.5 This example shows creating an observable with numbers 1, 2, and 3. As
is, this code emits these numbers synchronously. The space between the marbles is
added for visualization purposes.

Composes
two calls
to map

Prints 4, 9, and 16, followed
by "Stream ended"

https://rxmarbles.com
http://mng.bz/8NzB

286 CHAPTER 9 Streams programming
Now that you understand how an operator is designed and visualized, let’s move on to
another operator: filter.

FILTER OPERATOR

After you’ve been through map, filter should be straightforward. Like Array#filter,
this operator selects which values get propagated depending on the Boolean result of
a predicate function. The next listing shows the implementation.

const filter = curry(
 (predicate, stream) =>
 new Observable(observer => {
 const subs = stream.subscribe({
 next(value) {
 if (predicate(value)) {
 observer.next(value);
 }
 },
 error(e) {
 observer.error(e);
 },
 complete() {
 observer.complete();
 }
 })
 return () => subs.unsubscribe();
 });
);

As you can see, most of the domain-specific logic resides in the observer’s next method,
propagating the result to the next operator in the chain, and so on. The next section
jumps ahead to complete the triad with reduce.

REDUCE OPERATOR

The reduce operator reduces or folds all the values emitted by a source observable to
a single value that’s emitted when the source completes. The result is an observable of
a single value, as shown in the following listing.

Listing 9.21 Custom filter operator

map(square)

map(add(1))

Figure 9.6 The composition of two operators.
Three instances of an observable (arrow) are
shown: the source observable and two
operators. Each operator subscribes to the
previous stream and creates a new observable.

If the predicate returns a
truthy result, the value is
kept; otherwise, the event
is not emitted.

287Welcoming a new native: Observable
const reduce = curry(
 (accumulator, initialValue, stream) => {
 let result = initialValue ?? {};
 return new Observable(observer => {
 const subs = stream.subscribe({
 next(value) {
 result = accumulator(result, value);
 },
 error(e) {
 observer.error(e);
 },
 complete() {
 observer.next(result);
 observer.complete();
 }
 })
 return () => subs.unsubscribe();
 });
 };
);

SKIP OPERATOR

The skip operator allows you to ignore the first X number of events from a source
observable. The next listing shows the implementation of that operator.

const skip = curry(
 (count, stream) => {
 let skipped = 0;
 return new Observable(observer => {
 const subs = stream.subscribe({
 next(value) {
 if (skipped++ >= count) {
 observer.next(value);
 }
 },
 error(e) {
 observer.error(e);
 },
 complete() {
 observer.complete();
 }
 })
 return () => subs.unsubscribe();
 });
 }
);

Listing 9.22 Custom reduce operator

Listing 9.23 Custom skip operator

Creates a new object
when initialValue is
null or undefined

Applies the
accumulator
callback, like

Array#reduce

Emits the accumulated result
and sends the complete signal
to end the stream

288 CHAPTER 9 Streams programming
At this point, we’ve added map, filter, reduce, and skip operators. Believe it or not,
with these operators we can tackle a wide range of programming tasks. Here’s an
example that shows them used together:

import { filter, map, reduce, skip } from './rx.js';
const obs = Observable.of(1, 2, 3, 4);

reduce(add, 0,
 map(square,
 filter(isEven,
 skip(1, obs)
)
)
)
.subscribe({
 next(value) {
 assert.equal(value, 20);
 },
 complete() {
 done();
 }
 });

You can see the composable nature of these operators. When you’re building complex
chains, this type of layout is hard to parse. Normally, full-featured reactive libraries
like RxJS feature a pipe operator that makes writing all operators straightforward. An
alternative is to use dot notation to write these chains fluently, similarly to how we
chained then methods on promise chains. To do so, we’ll need to extend the built-in
Observable object.

9.4.4 Observable mixin extension

Let’s again use the technique of concatenative mixin extension we talked about in
chapter 3, which allows us to extend any object with new functionality. First, we’ll cre-
ate a small toolkit module from these operators as an object mixin, calling it Reactive-
Extensions, as shown in the next listing.

export const ReactiveExtensions = {
 filter(predicate) {
 return filter(predicate, this);
 },
 map(fn) {
 return map(fn, this);
 },
 skip(count) {
 return skip(count, this);
 },
 reduce(accumulator, initialValue = {}) {
 return reduce(accumulator, initialValue, this);

Listing 9.24 Defining the shape of our mini-rxjs toolkit

Exported as
a member
of the rx.js
module Refers to the

standalone
versions created
within the same
module

289Welcoming a new native: Observable

Ad
th
 }
}

Now the extension is a simple prototype extension, like Blockchain and other model
objects. Object.assign comes to the rescue once again:

Object.assign(Observable.prototype, ReactiveExtensions);

WARNING Again, use caution when monkey-patching JavaScript built-in types,
because doing so makes your code harder to port, upgrade, or reuse. If you’re
still keen on doing it for any reason, please write the required property exis-
tence checks so that you don’t break upgrades.

For the joy of it, let’s use the reactive extensions to create an observable chain. Listing
9.25 creates a simple stream out of a finite set of numbers; each number is an event.

 As you can see, events flow downstream through the pipeline one at a time. Along
the way, these chained, composable operators manipulate the data and form a chain
in which one operator subscribes to the preceding operator’s observable.

Observable.of(1, 2, 3, 4)
 .skip(1)
 .filter(isEven)
 .map(square)
 .reduce(add, 0)
 .subscribe({
 next: :: console.log
 })

Figure 9.7 illustrates how events flow through the pipeline.
 The use of composition is an existential quality of streams, which allows you to

chain the multiple internal subscriptions that are happening inside each operator and
manage them as a single subscription object.

Listing 9.25 Using observable operators to manipulate a number sequence

Skips the first
element, which is 1

Tests whether the number is
even, if it is let it through. In
this case, 2 and 4 make it
through.

Computes the square of
each number (4 and 16,
respectively)

ds all of
e events
together

(20)

Prints 20 to
the console

map(square)

filter(isEven)

skip(1)

reduce(add, 0)

Figure 9.7 The composition of four
operators, with the data (marbles)
changing in response to the application of
those operators. Every step of the way, a
new Observable is created, and observers
are connected.

290 CHAPTER 9 Streams programming
Now that you’ve seen how to join multiple operators (figure 9.7), let’s review how data
flows unidirectionally downstream. If you were to visualize each operator as a black
box, you’d see that although the data flows downstream, subscription objects flow
upstream, starting from the last call to subscribe all the way up to the source (the ini-
tial Observable object). This last call to subscribe kick-starts everything and notifies
the source to begin emitting events. Figure 9.8 explains the order of events.

So far, we’ve been dealing with arrays, which are relatively simple event sources. But the
rubber meets the road when we start to deal with asynchronous, potentially infinite data
sources such as async generators. In place of Observable.of(1,2,3), which acts like
the stream source for the operations we showed previously, we can have a generator
that, after the subscribe is called on the composed observable, starts feeding values
down the chain. The infinite nature of streams is in principle similar to that of gener-
ators in that until a generator returns, the function will continue to yield items indef-
initely. Each call to yield in turn calls the observer’s next; finally, return (implicit or
explicit) calls complete.

 Hence, the generator produces events over time and decides how much data to
push, the observable represents your business logic, and the subscriber consumes the
resulting event value flowing through the observable. Using generators is a good way
to experience how to subscribe to a potentially infinite data source like a DOM event
listener or receiving messages from a WebSocket. With observables, processing events
from any of these data sources will look exactly the same.

9.4.5 Representing push streams with generators

Generators create an interesting opportunity to use streams programming, because
you can generate arbitrary amounts of data and feed it to the observables all at the
same time or in chunks. Previously, we dealt with examples that lifted an array of values

operator

.subscribe(...)

operator

.subscribe(...) 1l

.subscribe(...) 2l

5l

4l

3l

observer.next(...)

observer.next(...)

Figure 9.8 A chain of observables. Data flows downstream as observers call the
next one’s next(…), while subscriptions flow upstream starting with the last call
to subscribe(). Steps are numbered to show how the last call to subscribe()
causes all operators to subscribe internally to one another upstream, notifying the
source observable to begin sending events down.

291Welcoming a new native: Observable
into an observable. Now we need to be able to lift a generator function into the
observable. To onboard a generator function, we’ll create a simple, homegrown con-
structor function.

 Listing 9.26 defines a new static function, Observable.fromGenerator. This func-
tion takes a normal generator or an async generator. We’re going to use Node.js’s
stream.Readable API to abstract over the generator function with consistent behav-
ior. This API is ideal because it uses an event emitter internally to fire events when new
data is available. When the generator yields new values, Readable fires an event that is
pushed to any subscribers that are listening. We’ll create a one-to-one mapping
between the data and end events and the next and complete observer methods,
respectively. The use of the bind operator syntax (introduced in chapter 5) makes this
mapping elegant and terse, because you can pass the bound methods directly as
named functions as callbacks to those events.

Object.defineProperty(Observable, 'fromGenerator', {
 value(generator) {
 return new Observable(observer => {
 Readable
 .from(generator)
 .on('data', :: observer.next)
 .on('end', :: observer.complete);
 });
 },
 enumerable: false,
 writable: false,
 configurable: false
});

Let’s put this new constructor into action with the example shown in the next listing.

function* words() {
 yield 'The';
 yield 'Joy';
 yield 'of';
 yield 'JavaScript';
}

Observable.fromGenerator(words())
 .subscribe({
 next: :: console.log,
});

This code would work exactly the same way if words() were an async generator (async
function* words). Time is the undercurrent of a stream, and if the events are sepa-
rated by seconds or nanoseconds, the programming model is the same.

Listing 9.26 Constructing Observables from a generator

Listing 9.27 Initialzing an observable with a generator function

Instantiates a Readable stream
from a generator object

Passes the event value
directly to the bound
observer’s next method

When the stream has ended (generator
returns), notifies the observer that the
stream has completed

292 CHAPTER 9 Streams programming
 Now we have a static constructor operator that lifts any generator function and a
few operators to process events. Let’s tackle a more complex example with these tools.
Back in listing 9.8, we wrote code that validated a stream of blocks read from a file.
Here’s that code again:

let validBlocks = 0;
const chain = new Blockchain() ;
let skippedGenesis = false;
for await (const blockData of generateBlocksFromFile('blocks.txt')) {
 if (!skippedGenesis) {
 skippedGenesis = true;
 continue;
 }
 const block = new Block(
 blockData.index,
 chain.top.hash,
 blockData.data,
 blockData.difficulty
);
 chain.push(block);

 if (block.validate().isFailure) {
 continue;
 }
 validBlocks++;
}

Using the small reactive extensions toolkit we’ve built so far, we can tackle this rather
complex imperative logic and take advantage of the declarative, functional API that
observables promote. When you compare the two listings, you’ll see the dramatic
improvement in code readability. Listing 9.28 makes the following key changes:

 Refactors the skip logic at the beginning of the loop using skip
 Moves block creation logic into a different function and calls it by using map
 Uses filter to emit only the valid blocks

const chain = new Blockchain();

// helper functions
const validateBlock = block => block.validate();
const isSuccess = validation => validation.isSuccess;
const boolToInt = bool => bool ? 1 : 0;

const addBlockToChain = curry((chain, blockData) => {
 const block = new Block(
 blockData.index,
 chain.top.hash,
 blockData.data,
 blockData.difficulty
)

Listing 9.28 Validating a stream of blocks using observables

293Welcoming a new native: Observable

S
fi
(

Vali

Ke
vali
 return chain.push(block);
});

// main logic

const validBlocks$ =
 Observable.fromGenerator(generateBlocksFromFile('blocks.txt'))
 .skip(1)
 .map(addBlockToChain(chain))
 .map(validateBlock)
 .filter(prop('isSuccess'))
 .map(compose(boolToInt, isSuccess))
 .reduce(add, 0);

validBlocks$.subscribe({
 next(validBlocks) {
 if (validBlocks === chain.height() - 1) {
 console.log('All blocks are valid!');
 }
 else {
 console.log('Detected validation error in blocks.txt');
 }
 },
 error(error) {
 console.error(error.message);
 },
 complete() {
 console.log('Done validating all blocks!');
 }
 });

Listing 9.28 instantiates a source observable validBlocks$ from a generator. This vari-
able holds a specification of your program. I use the word specification because the
observable captures your intent declaratively into an object whose logic hasn’t yet exe-
cuted. It starts by skipping the genesis block; then it maps a couple of business logic
functions needed to validate; finally, it counts only blocks for which Validation
returned successfully. This logic is simpler to parse, declarative, and point-free, and
your code is much more modular than before. Also, you get error handling for free
through the Observer’s error method.

 We can optimize this code even more. Can you spot where? If you recall the
map/compose equivalence, you’ll remember that you can fuse multiple calls to map
into a single call by using compose. I’m going to show only the Observable declara-
tion, for brevity:

Observable.fromGenerator(generateBlocksFromFile('blocks.txt'))
 .skip(1)
 .map(compose(validateBlock, addBlockToChain(chain)))
 .filter(prop('isSuccess'))
 .map(compose(boolToInt, isSuccess))
 .reduce(add, 0)
 .subscribe({...})

kips the
rst block
genesis)

Adds block to chain (needed
for validation algorithm)

dates
block

eps only
d blocks

The successful validation result
is mapped to a number (Success
= 1 | Failure = 0), so it can be
added up in the next step.

Adds total
valid blocks

294 CHAPTER 9 Streams programming
This version is simpler to visualize. Figure 9.9 shows how a complex algorithm can be
converted to a stepwise application of functions.

Furthermore, I mentioned that observables have built-in error handling. For the sake
of completeness, here’s a simple example of how errors are handled. When an excep-
tion occurs anywhere in your pipeline, the error object propagates downstream to the
last observer and triggers the error method:

const toUpper = word => word.toUpperCase()

function* words() {
 yield 'The'

skip(1)

map(compose(validateBlock, addBlockToChain(chain)))

JSON JSON JSON

JSON JSON

filter(prop(‘isSuccess’))

map(validationToNumber)

reduce(add, 0)

Block

TX
From

To

TX
From

To

Block header

Block

TX
From

To

TX
From

To

Block header

Block

TX
From

To

TX
From

To

Block header

Block

TX
From

To

TX
From

To

Block header

Figure 9.9 Validating blocks by using streams

295Welcoming a new native: Observable
 yield 'Joy';
 yield 'of';
 yield 42;
}

Observable.fromGenerator(words())
 .map(toUpper)
 .subscribe({
 next: :: console.log,
 error: ({ message }) => { assert.equal('word.toUpperCase is not a
 function', message) }
 })

As you’ll recall from chapter 5, ADTs also skip business logic when validation fails so
that you can handle the error from a single location, as the next listing shows.

const fromNullable = value =>
 (typeof value === 'undefined' || value === null)
 ? Failure.of('Expected non-null value')
 : Success.of(value);

fromNullable('j').map(toUpper).toString();

fromNullable(null).map(toUpper).toString();

Once again, the comparison of observables and ADTs is uncanny, which is why it was
so important to understand ADTs before observables.

 Let’s talk a bit more about operators. A library like RxJS will provide an arsenal of
operators for most of your needs, if not all of them. In the years I’ve worked with it,
I’ve rarely needed to add my own operator, but it’s good to know that the library is
extensible in this way. These operators are designed to accept observables as input
and return new observables, which is why they are called pipeable operators.

9.4.6 Pipeable operators

Observable operators are also known as pipeable functions—functions that take an
observable as input and return another observable. You’ve seen how these functions are
executed through composition and fluent chaining. In the near future, you will be able
to synthesize observables with the pipeline syntax (|>) natively in pure, idiomatic, vanilla
JavaScript without the help of any combinator functions, as shown in the next listing.

import { filter, map, reduce, skip } from './rx.js';

Observable.of(1, 2, 3, 4)
 |> skip(1)
 |> filter(isEven)

Listing 9.29 Skipping mapped functions on Validation.Failure

Listing 9.30 Combining observables with the new pipeline operator

Returns 'Success (J)'

Skips toUpper function and
returns 'Failure (Expected
non-null value)'

296 CHAPTER 9 Streams programming
 |> map(square)
 |> reduce(add, 0)
 |> ($ => $.subscribe({ next: :: console.log }));

Now we’re really kicking into hyperstream! But wait. Instead of a simple number
sequence, what would happen if the data were asynchronous? Would the model break?
Absolutely not. This code

async function* words() {
 yield 'Start';
 yield 'The';
 yield 'Joy';
 yield 'of';
 yield 'JavaScript';
}

Observable.fromGenerator(words())
 |> skip(1)
 |> map(toUpper)
 |> ($ => $.subscribe({ next: :: console.log, complete: done }));

prints

THE
JOY
OF
JAVASCRIPT

In this case, the observable and promises provide the right level of abstraction so that
you can deal with time or latency as though it didn’t exist. This code prints the right
result and in the right order.

 Alternatively, you can use bind (::) syntax to perform method extraction from our
catalog of reactive extension methods. Here’s that object again with map:

const ReactiveExtensions = {
 ...
 map(fn) {
 return map(fn, this);
 }
 ...
}

With the bind operator, we can control the binding of this, much as we would a vir-
tual method. The next listing shows the same program as listing 9.30.

const { skip, map, filter, reduce } = ReactiveExtensions;

const subs = Observable.of(1, 2, 3, 4)
 :: skip(1)
 :: filter(isEven)
 :: map(square)
 :: reduce(add, 0);

Listing 9.31 Combining observables with the new bind operator

Prints the value
20 to the console

this points to the source observable
Observable.of(1, 2, 3, 4).

Each function’s this will be set to
the preceding observable source.

297Welcoming a new native: Observable
subs.subscribe({
 next(value) {
 console.log(value);
 }
});

In this snippet of code, Observable.of(...)becomes the this reference in skip, cre-
ating a new this reference in filter, and so on. It’s simple to see how a collection of
elements or a generation function can be converted to a stream, but what about cus-
tom objects?

9.4.7 Streamifying objects

In chapter 8, you learned that you can create iterable objects or async iterable objects
by implementing the built-in Symbol.iterator or Symbol.asyncIterator, respec-
tively. These symbols allow objects to be enumerated by a for...of loop. It would
be nice if you could do something similar so that you can treat an object like an
Observable. This capability would allow us to treat any custom object in our program
as an observable and enjoy all the nice capabilities I have been describing, such as
composition, powerful operators, declarative API, and built-in error handling.

 It turns out that we can. The TC39 observable specification proposes the addition
of another well-known function-valued symbol: Symbol.observable (@@observable
for short). The semantics are consistent with those of other symbols. This new symbol
works in conjunction with Observable.from to lift any custom objects that need to be
interpreted as observables. The symbol follows a couple of rules:

 If the object defines Symbol.observable, Observable.from returns the result
of invoking that method. If the return value is not an instance of Observable,
it’s wrapped as one.

 If Observable.from can’t find the special symbol, the argument is interpreted
as an iterable, and the iteration values are delivered synchronously when sub-
scribe is called—a sensible fallback.

I’ll show a couple of examples now, beginning with adding Symbol.observable to our
custom Pair object in the next listing. I’ll omit the other symbols and properties.

const Pair = (left, right) => ({
 left,
 right,
 [Symbol.observable]() {
 return new Observable(observer => {
 observer.next(left);
 observer.next(right);
 observer.complete();
 });
 }
});

Listing 9.32 Adding @@observable to Pair

Prints 20 to
the console

298 CHAPTER 9 Streams programming
Observable.from(Pair(20, 30))
 .subscribe({
 next(value) {
 console.log('Pair element: ', value);
 }
 });

A Blockchain can also become a stream of blocks. Any time a new block is added to
the chain, it pushes into the stream, and any subscribers are notified. The next listing
shows a similar configuration to the PushArray example in section 9.3.2.

class Blockchain {
 blocks = new Map();
 blockPushEmitter = new EventEmitter();
 constructor(genesis = createGenesisBlock()) {
 this.top = genesis;
 this.blocks.set(genesis.hash, genesis);
 this.timestamp = Date.now();
 this.pendingTransactions = [];
 }

 push(newBlock) {
 newBlock.blockchain = this;
 this.blocks.set(newBlock.hash, newBlock);
 this.blockPushEmitter.emit(EVENT_NAME, newBlock);
 this.top = newBlock;
 return this.top;
 }

 //...

 [Symbol.observable]() {
 return new Observable(observer => {
 for (const block of this) {
 observer.next(block);
 }
 this.blockPushEmitter.on(EVENT_NAME, block => {
 console.log('Emitting a new block: ', block.hash);
 observer.next(block);
 });
 });
 }
}

One thing to note about this logic is that it never calls observer.complete. It’s infinite.
Subscribers need to unsubscribe when they no longer want to receive new data, as
shown in the next listing.

Listing 9.33 Streaming blocks in a blockchain

Because Pair’s @@observable
property returns an Observable
object, the source becomes the
result of invoking it. It prints Pair
element: 20 and Pair element: 30

Notifies listeners
of a new block

Invokes Blockchain’s
@@iterator to enumerate
the current list of blocks

Upon receiving new
block, pushes it into
the stream

299Welcoming a new native: Observable
const chain = new Blockchain();
chain.push(new Block(chain.height() + 1, chain.top.hash, []));
chain.push(new Block(chain.height() + 1, chain.top.hash, []));

const subs = Observable.from(chain)
 .subscribe({
 next(block) {
 console.log('Received block: ', block.hash);
 if (block.validate().isSuccess) {
 console.log('Block is valid');
 }
 else {
 console.log('Block is invalid');
 }
 }
 });

// ... later in time

chain.push(new Block(chain.height() + 1, chain.top.hash, []));
subs.unsubscribe();
chain.height(); // 4

If you run this code, the printout should look like the following:

Received block b81e08daa89a92cc4edd995fe704fe2c5e16205eff2fc470d7ace8a1372e7de4
Block is valid
Received block 352f29c2d159437621ab37658c0624e6a7b1aed30ca3e17848bc9be1de036cfd
Block is valid
Received block 93ff8219d77be5110fa61978c0b5f77c6c8ece96dd3bba2dc6c3c4b731a724e7
Block is valid
Emitting a new block:

07a68467a3a5652f387c1be5b63159e7d1a068517070e3f4b66e5311e44796e4
Received block 07a68467a3a5652f387c1be5b63159e7d1a068517070e3f4b66e5311e44796e4
Block is valid

Suppose that you push a fourth block into the chain with an invalid index this time:

chain.push(new Block(-1, chain.top.hash, []));

Then you’ll see

Emitting a new block:
c3cc935840c71aa533c46ed7c3bfc5fc81e55519c7e52e0849afe091423bf5e0

Received block c3cc935840c71aa533c46ed7c3bfc5fc81e55519c7e52e0849afe091423bf5e0
Block is invalid

Allowing Blockchain to be treated as a stream gives you automatic reactive capabili-
ties, which means you can connect other parts of your application that subscribe to

Listing 9.34 Subscribing to and unsubscribing from a reactive Blockchain object

Passes the blockchain object
directly to the constructor

Later pushes a third
block, which will print
its hash to the console

Need to unsubscribe to
finalize the stream

300 CHAPTER 9 Streams programming
receive notifications when new blocks are added to the chain. This example is a sim-
ple implementation, but it’s not far from a real-world scenario in which other servers
(nodes) in the blockchain network can subscribe to receive push notifications when a
new block is mined in any of the peer nodes.

 We added quite a bit of code to make the Blockchain class reactive. The good
news is that most of this behavior relied on symbols, allowing us to extract this code
into a separate module and use metaprogramming techniques (chapter 7) to aug-
ment objects by hooking into these symbols. This module can be implemented as a
proxy to make any iterable object reactive.

9.4.8 Dynamic streamification

In chapter 7, we used a Proxy to implement a smart block—a block that automatically
recomputes its own hash when any of its fields changes. In this section, we’ll use a sim-
ilar technique to make Blockchain a reactive data structure without adding a single
line of code. The code is complex so I’ve divided it into a couple of functions. The fol-
lowing listing shows the overall layout.

const reactivize = obj => {

 implementsPush (obj)
 || throw new TypeError('Object does
 not implement a push protocol');

 const emitter = new EventEmitter();

 const pushProxy = //... defined next

 const observable = //... defined next

 return Object.assign(pushProxy, observable);
}

Instead of adding all that observable scaffolding to Blockchain, we can define our
own Push proxy to inject this behavior at runtime and keep things nicely separated.
The proxy handler object requires objects to declare a push method, which Block-
chain does. This code can make any pushable data structure reactive:

function implementsPush(obj) {
 return obj
 && Symbol.iterator in Object(obj)
 && typeof obj['push'] === 'function'
 && typeof obj[Symbol.iterator] === 'function';
}

Next, let’s implement pushProxy in the next listing. This proxy will trap any calls to
push and automatically augment its behavior to emit the value passed in.

Listing 9.35 High-level structure of the reactive function

301Welcoming a new native: Observable
const ON_EVENT = 'on';
const END_EVENT = 'end';

const pushProxy = new Proxy(obj, {
 get(...args) {
 const [target, key] = args;
 if (key === 'push') {
 const methodRef = target[key];
 return (...capturedArgs) => {
 const result = methodRef.call(target, ...[capturedArgs]);
 emitter.emit(ON_EVENT, ...capturedArgs);
 return result;
 }
 }
 return Reflect.get(...args);
 }
 });

With the push behavior defined, the last task is implementing the observable logic.
This logic listens for push events and notifies its subscribers. Also, every time you
instantiate this observable, it emits (replays) any objects the data structure currently
has. In listing 9.37, I’ve taken the liberty of adding some logging, using the new con-
sole APIs console.group and console.groupEnd, which I think will make tracing the
data flow easier. I’ve struggled with this task myself, especially in complicated and
intertwined pipelines, so the additional logging helps.

const LOG_LABEL = `IN-STREAM`;
const LOG_LABEL_INNER = `${LOG_LABEL}:push`;

const observable = {
 [Symbol.observable]() {
 return new Observable(observer => {
 console.group(LOG_LABEL);
 emitter.on(ON_EVENT, newValue => {
 console.group(LOG_LABEL_INNER);
 console.log('Emitting new value: ', newValue);
 observer.next(newValue);
 console.groupEnd(LOG_LABEL_INNER);
 })
 emitter.on(END_EVENT, () => {
 observer.complete();
 })
 for (const value of obj) {
 observer.next(value);
 }
 return () => {
 console.groupEnd(LOG_LABEL);
 emitter.removeAllListeners(ON_EVENT, END_EVENT);

Listing 9.36 Using a proxy object to trap calls to push

Listing 9.37 Implementing @@observable to make any object behave like a stream

Spread operator to capture all
the arguments. The first element
is the target object, and the
second is the property key.

Executes push
normally and

captures its result
Emits the

pushed object

Declares the Symbol.observable
so you can pass this object
works with Observable.from

Creates an outer
logging group label for
the entire duration of
the stream. Any logs
within this group are
intended for better
visibility.

Creates an inner
level of indentation

to handle every
push sequence in a

different level

Creates an outer logging
group label for the entire
duration of the stream. Any
logs within this group are
intended for better visibility.

302 CHAPTER 9 Streams programming
 };
 });
 }
}

Now that we have the components we need, let’s compose them. The result is a proxied
object decorated with Symbol.observable so that the Observable API can interoperate
with it. Because Object.assign copies symbols as well, let’s use it:

return Object.assign(pushProxy, observable);

The easy part is streamifying objects that have push/iterator behavior. Example are
Array and Blockchain. To keep things simple, let’s use an array:

const arr$ = reactivize([1, 2, 3, 4, 5]);

const subs = Observable.from(arr$)
 .filter(isEven)
 .map(square)
 .subscribe({
 next(value) {
 console.log('Received new value', value);
 count += value;
 }
 });

//... later in time

arr$.push(6);

subs.unsubscribe();

This code flow is easy to follow. If you were to add logging statements to isEven and
square, the output of this program would look something like this (the logging
enhancements help us read the output):

IN-STREAM
 Is even: 1
 Is even: 2
 Squaring: 2
 Received new value 4
 Is even: 3
 Is even: 4
 Squaring: 4
 Received new value 16
 Is even: 5

 //... later in time

 IN-STREAM:push
 Emitting new value: 6
 Is even: 6

303Welcoming a new native: Observable
 Squaring: 6
 Received new value 36

With this function, we can write the same code as before with a much leaner Block-
chain class:

const chain$ = reactivize(chain);

Observable.from(chain$)
 .subscribe({
 next(block) {
 console.log('Received block: ', block.hash);
 if (block.validate().isSuccess) {
 console.log('Block is valid');
 }
 else {
 console.log('Block is invalid');
 }
 }
 });

This chapter is the extent of this book’s coverage of observables. The goal was to
give you a taste of this programming model, which without a doubt will change the
way you write JavaScript applications. The way that JavaScript’s event loop operates
allows us to raise the level of abstraction seamlessly from an array to iterators to gen-
erators to async generators and now to observables, creating the perfect architec-
ture for the language.

In this chapter, the techniques I have shown you throughout this book come
together, from functional style currying and composition to ADTs to iterables and
generators and to the abstraction of time. All those techniques lead us to a model of
programming that could not be better suited to observables. Making observables part
of ECMAScript will allow platforms, frameworks, and applications to share a push-
based stream protocol.

Want to dive deep into streams and observables?
The behavior implemented in the preceding snippet is known as a cold observable.
Observables are said to be cold when elements are produced inside the observable
itself. In this case, the observable will replay all the events to new subscribers. By con-
trast, hot observables occur when the data is produced outside the observable itself,
such as from a WebSocket. In such a case, it would be impossible to replay packets
that have already been transmitted without additional infrastructure and code.

If you’d like to dive deeper this topic, check out RxJS in Action (http://mng.bz/E21j),
by Paul P. Daniels and Luis Atencio (Manning, 2017). This book discusses streams
and observables from theoretical and practical standpoints, using RxJS 5 to show-
case these concepts.

http://mng.bz/E21j

304 CHAPTER 9 Streams programming
9.5 Closing thoughts
This book presented a whirlwind of JavaScript topics but only scratched the surface of
what you can do with the language now, as well as what lies ahead. I hope that the top-
ics you learned here will guide and inspire you to explore different ways of problem
solving, but always consistently within the framework of the paradigms you use.
Employ these techniques wisely, and use the right tool for the job. For teaching pur-
poses, I presented lots of techniques, patterns, and paradigms in the same applica-
tion. This approach was purely didactical. I expect you to cherry-pick the techniques
that make sense for the type of application you are building and what’s best for the
problem you are solving.

 Strolling down memory lane, we began by inspecting JavaScript’s object and proto-
typed inheritance model. You can take advantage of this object-oriented system to cre-
ate the objects that capture the state of your application. Then you learned how
functional programming can help you implement the business logic in a pure and
composable way. By reducing mutation and side effects, and by harnessing the power
of closures and higher-order functions, you can get rid of nasty bugs that can afflict
even the best-tested business logic.

 With these two foundations in place, you learned how to organize your code into
fine-grained, reusable modules by using a functional and orthogonal architecture.
You also set clear boundaries that separate cross-cutting logic (logging, tracing, poli-
cies, and so on) with metaprogramming.

 Finally, after looking at data and functions, you tackled another dimension: time.
Data can arrive in many form factors and from different locations. Asynchronous pro-
gramming with promises and observables can erase data locality and simplify how you
handle different types of data, using a consistent set of APIs and programming models.

 It’s important to realize that JavaScript has a unique challenge as the language of the
web. It needs to not only remain relevant with modern programming idioms that devel-
opers want, but also continue to be the standardizing body for programming the web as
a whole. These two forces are often at odds, and it’s not sensible to add every possible
API natively to the language. As exciting as it is to use new and shiny features, we need to
balance this novelty with the need to not bloat the core modules that are downloaded
over the network. There’s still a strong preference for a canonical, bare JavaScript lan-
guage, one with a small kernel into which you can plug APIs such as Promise, Proxy,
Reflect, and even Observable. We’ll have to wait to see whether the JavaScript standard
libraries continue to grow and whether a modular kernel is in the works so that you can
download or import only the pieces of JavaScript that you need.

 Our journey ends here. In closing, I’d like to urge each of you to fund your favor-
ite NPM library or contribute to it. We rely on open source now more than ever, and
open source is the main avenue for innovation. JavaScript itself is evolving in the
open. Open source is where tried and tested new ideas come to fruition. ECMAScript
Modules, promises, and observables all originated from open source libraries before
becoming official standards, for example.

305Summary
 At age 25, JavaScript continues to be reimagined each year and reequipped to
tackle the challenges of modern application development. What started as a typical
object-oriented language is now being classified as a lambda language, according to
experts like Douglas Crockford. The cloud is the limit. If all bets are on the table, I’d
continue to bet on JavaScript and its future. I hope that reading this book gave you
the same joy that writing it gave me!

Summary
 An Iterator object has the method next, which returns an object with properties

value and done. value contains the next element in the iteration, and done is
the control switch that stops the iteration process.

 An async iterator follows the same behavior as a normal iterator except that
next returns a Promise with a result of the same shape {value, done}.

 To build custom enumerable objects, you can implement Symbol.iterator.
You can also define Symbol.asyncIterator to enumerate the pieces of your
objects asynchronously.

 Generators are a special type of function that can produce a sequence of values
instead of a single value—a factory for iterables. A generator function is identi-
fied by an asterisk (*).

 A generator function returns a Generator object that implements the iterator
protocol, which means you can consume it by using the for...of loop.

 The difference between a normal generator and an async generator is that gen-
erated values are wrapped by a Promise. To consume an async generator, you
can use the for await...of loop.

 Streams are sequences of values emitted over time. Anything can become a
stream, such as a single value, an array, or a generator function. Anything that is
iterable can be modeled as a stream.

 The new Observable API proposes to make stream-based, reactive program-
ming easier.

 Observables are push-based, declarative streams. Their programming model is
based on publish/subscribe. Observables are agnostic to the type of data in the
sequence and to whether the data is synchronous or asynchronous; the pro-
gramming model is the same.

 You can create and augment your own observable objects by implementing a
function-valued Symbol.observable property.

appendix A
Configuring Babel

Babel is a JavaScript-to-JavaScript transpiler in charge of converting next-level
JavaScript or future JavaScript to a version of JavaScript that runs standard on your
platform, whether it’s a browser or Node.js. This book introduced a few proposals
that are still in their beginning stages. For this new syntax to work, we first have to
use Babel to convert it to standard JavaScript for the version running inside the
Docker container (Node.js 14). You can also transpile to your own platform ver-
sions. The bigger the gap between the standard that the code follows (such as
ECMAScript 2020) and the standard supported by your browser or server, the more
work Babel must do to transpile the code.

 To configure Babel in your project, you must install the necessary dependen-
cies. This book uses Babel 7. Here’s a slice of the project’s package.json:

 "devDependencies": {
 "@babel/cli": "^7.10.1",
 "@babel/core": "^7.10.2",
 "@babel/node": "^7.10.1",
 "@babel/plugin-proposal-class-properties": "^7.10.1",
 "@babel/plugin-proposal-function-bind": "^7.10.1",
 "@babel/plugin-proposal-numeric-separator": "^7.10.1",
 "@babel/plugin-proposal-pipeline-operator": "^7.10.1",
 "@babel/plugin-proposal-throw-expressions": "^7.10.1",
 "@babel/preset-env": "^7.10.2",
 "@babel/preset-flow": "^7.10.1",
 "@babel/register": "^7.10.1",
 }

After you install the necessary dependencies, the easiest way to configure Babel is
through a .babelrc file at project level:

{
 "presets": [
306

307APPENDIX A Configuring Babel
 [
 "@babel/preset-env",
 {
 "modules": false,
 "targets": {
 "node": "current"
 },
 "debug": true
 }
]
],
 "plugins": [
 "@babel/plugin-proposal-class-properties",
 "@babel/plugin-proposal-numeric-separator",
 "@babel/plugin-proposal-function-bind",
 "@babel/plugin-proposal-throw-expressions",
 ["@babel/plugin-proposal-pipeline-operator", { "proposal": "minimal" }]
],
 "sourceMaps": "both",
 "comments": true,
 "highlightCode": true
}

When Babel is configured, you can run it by using babel-cli. To transpile all files into
a dist directory, for example, you can run

babel src --out-dir dist --keep-file-extension --copy-files

appendix B
Typed JavaScript<T>

As we reflect on everything that we’ve covered about JavaScript in this book, it’s
hard to think that anything could be missing. But the web is a living, breathing
creature, and we can count on JavaScript to continue evolving in the years to come.
Believe it or not, I skipped many important topics so that this book could fit in your
hands (or on your mobile device). But I felt that one of these topics was important
to discuss, at least in a small appendix: types for JavaScript.

 In the programming world, there’s always been the epic struggle of choosing
between typed and untyped languages. If you’ve read this far, you’ve already made
that decision. Type systems come in many flavors. The spectrum includes strongly
typed, statically typed, weakly typed, optionally typed, dynamically typed, and many
more variations. What’s the reason for picking one over the other? You can ask ten
people and get ten different answers. Although JavaScript is and always will be
dynamically typed, this topic has received more attention as languages such as
TypeScript, Elm, PureScript, and Reason continue to gain momentum. Where does
this leave JavaScript?

 Fortunately, you don’t have to switch to another language; you can use plugga-
ble type extensions, which are widely used in industry, particularly with React’s
PropTypes feature.

 Having a type system is valuable because it helps prevent certain classes of
errors. Computers are more effective than humans at parsing structured data, and
types are restrictions or boundaries that provide the necessary structure to your
code. By removing the freedom of being able to assign a variable to anything you
can imagine, the computer can do its job much more effectively before you even
type npm start. Think of types as placing the virtual walls you use to close off a sec-
tion of the house with your smart vacuum cleaner; the device cleans much better
that way.
308

309First, what?
 This appendix teaches you some features of the third-party, pluggable Flow type
system for JavaScript (https://flow.org), which is an alternative to TypeScript if you
want to continue using JavaScript. You’ll learn about the benefits that a type checker
can bring to a JavaScript project and the ways to annotate a variety of objects in your
code. Even though I’m using Flow as a reference implementation for types, the library
itself is not what’s important; the concepts are. The specific type annotations provided
by Flow look similar to the ones provided by TypeScript, as well as ones you can find in
some early TC39 strawman proposals. It’s likely that what you’ll learn here will be
compatible with any upcoming proposal that JavaScript decides to adopt.

 It’s a bit uncommon for a book on JavaScript to talk about static types, but this
book isn’t your conventional JavaScript book, after all.

B.1 First, what?
A bit of history is in order. JavaScript is considered to be the poster child for dynami-
cally typed languages. So you’d be surprised to find out that a type system almost
landed in JavaScript many years ago. The ECMAScript 4 proposal (http://mng.bz/
NYe7) defined a type system for ECMAScript-based languages that JavaScript could
adopt naturally. If you skim the document, you’ll find many similarities with the con-
tents of this appendix. The type system was never officially released, however, due to
(among other things) a lack of consensus among the big players of the time, includ-
ing Macromedia, Netscape, and Microsoft.

 But the conversation didn’t stop there. For some time now, other big web compa-
nies have tried to take a stab at this feature outside the standardization committees by
creating new languages that compile to JavaScript or by pushing open source libraries
that extend JavaScript syntax with annotations (such as metaprogramming) that a
type checker tool can verify.

 As you know, JavaScript is a weak, dynamically typed language. Now let’s add a
third dimension: optionally typed (also known as pluggable types). Let’s unpack the
following:

■ Weak—refers to the programming language’s ability to convert data types
implicitly depending on use. It’s an optimistic approach to figuring out what
the developer is trying to do. Here are a few examples (and see whether you
can guess the last one):

!!'false' + 0 // 1
2 * true + false // 2
!null + 1 + !!true // ?

■ Dynamic—Variable types are enforced at runtime instead of at compile time.
The same variable can hold values of different types. Here’s an example:

let foo = 4
foo = function() {}
foo = [4]

https://flow.org/
http://mng.bz/NYe7
http://mng.bz/NYe7

310 APPENDIX B Typed JavaScript<T>
■ Optionally (pluggable) typed—A pluggable type system is a collection of meta-
annotations that you can bind to an optional type checker. In basic terms, the
type system should not get in your way if you opt out; it’s purely optional. Also,
you should be able to add type information progressively in places where you
need it. Optional types are not an all-or-nothing deal. Section B.3 talks about
some of the type annotations that you can use.

JavaScript’s type system is dynamic and weak, accompanied by a set of primitives you
know well: string, boolean, number, symbol, null, function, and undefined. Don’t
forget the quirky handling of null, which resolves to object. These primitive types
don’t define any properties. So you might ask how this operation is possible: 3.14159
.toFixed(2). Invoking a method is possible because you can use their corresponding
object wrappers—String, Number, and so on—to work with these types directly or
indirectly. By indirectly, I mean that code written as '0'.repeat(64) gets automatically
wrapped (boxed) and converted to new String('0').repeat(64), which does let you
call methods.

 With this basic set of types, we’ve been able to build an infinite amount of appli-
cations. These types are provided by the system; in JavaScript, you have no way to
define your own custom data types. You can fix that situation by overlaying a type
system, however.

 In this appendix, you’ll be using the Flow library from Facebook. Like Babel, Flow
plugs into your development tool belt. This library is simple to install and run, so I
won’t bore you with the details. Rather, I’ll focus on the concepts, beginning by
describing the benefits that types add to your JavaScript code.

B.2 Benefits and drawbacks of statically typed JavaScript
In this section, I briefly go over some of the general benefits of programming with
types. The goal is not to go in depth into this subject; tons of other books do a much
more thorough job. The goal, rather, is to give you an idea of the benefits of using
types to write enterprise-scale applications and how types fit under the modern Java-
Script development umbrella.

 I’m sure we’ve all asked ourselves at some point whether static wins over dynamic
typing. The debate is probably evenly split. It’s important to mention that good cod-
ing practices can go a long way; by following best practices and using the language
properly, you can write JavaScript code that is easy to read and reason about despite
not having type hints of any kind.

 Without a doubt, type information is incredibly valuable because it gives you code
correctness—a measure of how your code adheres to the protocols and interfaces that
you designed. (Are all your input and output types compatible, for example, and do
your objects have the correct shape?) The importance of types stems from their ability
to restrict and make your code more rigid and structured. These features are good,
especially in JavaScript, in which you’re free to do anything and everything. As Reginald

311Benefits and drawbacks of statically typed JavaScript

p
is
o
=

Braithwaite eloquently put it, “The strength of JavaScript is that you can do anything.
The weakness is that you will.”

 To set the tone, the next listing shows our proof-of-work algorithm with type
information.

const proofOfWork = (block: Block): Block => {
 const hashPrefix: string = ''.padStart(block.difficulty, '0');
 do {
 block.nonce += nextNonce();
 block.hash = block.calculateHash();
 } while (!block.hash.toString().startsWith(hashPrefix));
 return block;
}

function nextNonce(): number {
 return randomInt(1, 10) + Date.now();
}

function randomInt(min: number, max: number): number {
 return Math.floor(Math.random() * (max - min)) + min;
}

Notice the “: <type>” labels in front of all variables and function signatures in listing
B.1. Functions and their return values should be typed as the input parameters. In this
case, proofOfWork is a function that takes a Block object and returns a Block object—
in short, a function from Block to Block or Block => Block. By having a clear con-
tract, you can build correct expectations for how your APIs are meant to be used.
Technically speaking, you can catch a lot of potential errors in the flow of your code at
an early stage. Although this example may seem to be overkill for simple scripts or
rapid prototype code, the benefits of a type system are obvious as the size of your code
increases and refactoring becomes more complex. Also, IDEs can provide smart sug-
gestions and checks that can make you more confident and productive.

 Another benefit of types is that a compiler can trace through and look for inconsis-
tencies in the inputs and outputs of your functions. So if you change the contract of
some function from a major refactoring, you can be notified right away of any errors
without having to run the function. Compilers help you catch hidden bugs that can
occur as a result of type coercion. Your code might behave as though it works locally
due to some hacky coercion rules (such as converting a string to a number or a truthy
Boolean result), but most likely, it will fail with production-level use patterns. By that
time, it’s too late to fix any problems.

 Multiple studies and surveys suggest that type information reduces the number of
bugs by at least 15%. In fact, the statically typed programming language Elm claims to
have no runtime execution errors, ever. (By the way, Elms compiles to JavaScript.)

 The fact that you code with JavaScript doesn’t mean you don’t care about types,
however. You always need to know the type of the variable you’re working with to

Listing B.1 Proof-of-work code with type information

roofOfWork
 a function
f type Block
> Block.

hashPrefix is
a variable of
type string.

312 APPENDIX B Typed JavaScript<T>
determine how to use it, which causes unnecessary burden on your already-overloaded
brain. We JavaScript developers are forced to write lots of tests that cover as many
paths of the code as possible to free us from carrying the entire structure of our appli-
cations in our heads.

NOTE To clarify, a type system is not a replacement for well-written tests.

Types shine beyond quick prototype scripts. For large enterprise development, the
perceived additional typing time they add is probably much less than what you’d
spend writing comments to explain how a function is used. Like tests, types help you
document your code.

 Here’s a list of some of the benefits you gain from type checking, in no particular
order:

■ Self-documentation—Types guide development and can even make you more pro-
ductive by allowing IDEs to infer more information about your code. If you see
a variable named str, for example, does it refer to a string or to an observable
stream? You’ll never know unless you have full context or crack open the code.
You can use JSDoc to add documentation, which helps the IDE achieve some
guidance, but it’s limited, and no check is being done.

■ Structured, rigid code—Types are your application’s blueprint. JavaScript’s object
system is notorious for being flexible and malleable, allowing you to add prop-
erties to and remove properties from an object at runtime. This feature makes
code hard to reason about, as you have to keep track of when objects might
change state. Ease the cognitive load by defining the object’s shape ahead of
time. This practice will make you think twice about mishandling object proper-
ties, and if you do, the type checker might warn you.

■ No API misuse—Because you can check inputs and outputs, you can avoid misus-
ing or abusing APIs. Flow comes with type definitions for JavaScript core APIs
out of the box. Without it, a subtle error occurs where new Array("2") is
accepted when you meant to create an array of size 2, as in new Array(2).

Also, the type system can prevent you from calling functions with fewer argu-
ments than it’s declared to accept. The check for Math.pow(2) fails because
you’re missing the second exponent parameter, for example.

■ Autocheck of invariants—An invariant is an assertion that must always hold true
during the life cycle of an object. An example is “A block’s difficulty value must
not exceed 4.” You’d have to write code to check this invariant at the construc-
tor each time or use the type system to check it for you.

■ Refactoring with greater confidence—Types can ensure that contracts are not vio-
lated by moving or changing the structure of your code.

■ Improved performance—Types help you write code that is easier to optimize in
some JavaScript engines, such as V8. As you know, JavaScript allows you to call
functions with as many arguments as you want. That’s not the case if you use

313Benefits and drawbacks of statically typed JavaScript
types. The reason is that the restrictions imposed by the type checker ensure
that functions remain monomorphic (guaranteed to have one input type) or at
least polymorphic (two to four input types). The fewer input type variations a
compiler has to account for on a given function, the better you can use the fast
inline caches present inside the JavaScript engine to generate the most optimal
performance. It’s easier to optimize storage on an array of equally typed values
(all strings, for example) than it is for an array of two or three types.

■ Reduced potential for runtime execution errors—Types can free you from a whole
class of errors that usually manifest as TypeError and ReferenceError. These
errors can slip into production systems undetected and are hard to debug.
Table B.1 summarizes some of these issues.

As mentioned earlier, the language Elm claims that static typing is one of the reasons
why it has no runtime execution errors. This won’t be the case for JavaScript, but at
least you can see that a large chunk of errors are preventable.

 For the sake of argument, here are some drawbacks of using types:

■ Steep learning curve—In a dynamic language, some concepts can be expressed
with simple code. Adding type information to functions can be daunting
because to make this information useful, you need to capture the variations of
input and outputs that a function, such as curry, can handle. This task requires
advanced understanding of the type system. Also, types for a function that relies
mostly on data present in its lexical scope (closure) are not terribly useful.

■ Not portable—At the moment, JavaScript does not define any formal proposal
for a type system. Such a proposal may be a reality in the distant future, but

Table B.1 Errors preventable by type checking. All these errors can be caught during development
instead of at runtime.

Description Code Runtime error Type check

Calling an
undefined
property

let foo = undefined;
foo();

TypeError: foo is
not a function

Cannot call foo
because undefined
is not a function

Using an invalid
LHS value

function foo() {}

if(foo() = 'bar') {

}

ReferenceError:
Invalid left side in
assignment

Invalid left side in
assignment

Reading proper-
ties from null

let someVal = null;
console.log(someVal
.foo);

TypeError: Cannot
read property 'foo'
of null

Cannot get
someVal.foo
because property foo
is missing in null

Setting proper-
ties on null

let someVal = null;
someVal.foo = 1;

TypeError: Cannot
set property 'foo' of
null

TypeError: Cannot
set property 'foo' of
null

314 APPENDIX B Typed JavaScript<T>
we’re quite far from one. Although there is some general consensus about the
look and feel, as demonstrated by some of the leading tools, the type system is
still vendor-specific.

■ Poor error reporting—Some type errors can be opaque and hard to trace, espe-
cially when implementing advanced type signatures.

Now that you understand the benefits and drawbacks of adding types, let’s look at
some of Flow’s type annotations.

B.3 Type annotations
Types are compile time metadata that can describe runtime values. Although Flow has
the capability to infer the types of your variables by analyzing your code, it’s still help-
ful to annotate it at key places to enable a much deeper analysis.

 Flow is complete and extensive, and it offers a wide variety of type annotations, of
which I’ll discuss a few. The Flow compiler analyzes files that have the //@flow pragma
comment at the top. After Flow checks your files, and if everything looks good, you
need to remove these annotations (because they are not valid JavaScript at the moment)
by using another library or any transpiler, such as Babel.

 I can’t cover the myriad type annotations available in Flow, but these six are used
frequently in daily coding:

■ Class types
■ Interface types
■ Object types
■ Function types
■ Generic types
■ Union types

B.3.1 Class types

As in other statically typed, object-oriented languages, classes operate both as values
and as types. Here’s an example:

class Block {

 //...
}

let block: Block = new Block(...);

This form of typing is known as nominal typing. You can also type the methods and
fields inside the class, which is where you get the most benefit. The next listing shows
an example with the Block class. I’ve omitted some parts for demonstration purposes.

class Block {
 index: number = 0;

Listing B.2 Block class with type information

315Type annotations
 previousHash: string;
 timestamp: number;
 difficulty: Difficulty;
 data: Array<mixed>;
 nonce: number;

 constructor(index: number, previousHash: string,
 data: Array<mixed> = [], difficulty: Difficulty = 0) {

 // ...
 }

 isGenesis(): boolean {
 //...
 }

 //...
}

The type system will ensure that the properties of this class are used properly and
assigned to the correct values. The line

const block: Block = new Block(1, '0'.repeat(64), ['a', 'b', 'c'], 2);

is valid, whereas this one issues a type warning:

const block: Block = new Block('1', '0'.repeat(64), ['a', 'b', 'c'], 2);

Cannot call Block with '1' bound to index because string is incompatible with
number.

As you can see, the type checker prevents me from using string in place of number in
the constructor. Classes like Block naturally become types and are processed by Flow
accordingly. In section B.3.2, we take a look at interface types.

B.3.2 Interface types

An interface is like a class, but it applies more broadly and has no implementation.
Interfaces capture a set of reusable properties that multiple classes can implement.
Remember from chapter 7 that our main model objects (Block, Transaction, and
Blockchain) implemented a custom [Symbol('toJson')] property as a hook for a
custom JSON serialization. This check happens at runtime, however, and nothing ver-
ifies whether an object implements this contract until you run the algorithm. Inter-
faces are a much better solution to this problem. Let’s model the same solution for
which we used symbols in chapter 7, this time using interfaces, as shown in the next
listing.

Uses my own custom
type called “Difficulty”

“mixed” can be used as a placeholder for
an array that can hold any type of object.

316 APPENDIX B Typed JavaScript<T>
interface Serializable {
 toJson(): string
}

class Block implements Serializable
 toJson() {
 // ...
 }
}

Failing to provide the implementation results in the following type error:

Cannot implement Serializable with Block because property toJson is missing
in Block but exists in Serializable.

Aside from classes and interfaces, object literals can also be typed.

B.3.3 Object types

As you saw earlier, you can assign an object the type of the class of which it’s an instance.
Another option is to describe the structure or shape annotated when the object is created.
This form of typing applies to object literals. Recall from chapter 4 that Money is a construc-
tor function that returns an object with properties such as currency, amount, equals,
toString, plus, and minus. We can define that data structure in the following way:

type MoneyObj = {
 currency: string,
 amount: number,
 equals: boolean,
 round: MoneyData,
 minus: MoneyData,
 plus: MoneyData
}

const money: MoneyObj = Money('?', 0.1);
money.amount; // 0.1

money.locale;

Cannot get money.locale because property locale is missing in MoneyObj

MoneyObj describes the shape of the object resulting from calling the Money function
constructor. Also, if you were to mistype the name of a property, the type checker will
let you know right away:

money.equls();

You won’t mind this helpful hint either:

Cannot call money.equls because property equls (did you mean equals?) is
missing in MoneyObj.

Listing B.3 Using interfaces instead of symbols

Block is required to provide
implementation of the interface
methods from which it inherits.

317Type annotations
As you know, Money is a function object, which means that you need to describe both
the input as well as the output. This type is known as a function type.

B.3.4 Function types

The basic structure of a function type declaration is similar to that of an arrow func-
tion. It describes input types, followed by fat-arrow (=>), followed by the return type:

(...input) => output

In the case of Money, the constructor accepts currency and amount. If you were to
inspect its type signature, it would look like this:

type Money = (currency: string, amount: number) => MoneyObj

Here’s a more interesting example from our functional programming topics in chap-
ter 5. Recall that Validation.Success integrates the Functor mixin, which means
that it has the ability to map functions to it. This trivial example may jog your memory:

const two: Success<number> = Success.of(2);
success.map(squared).get(); // 4

The next listing shows a simplified type definition for Success, which includes Func-
tor.map.

class Success<T> {
 static of: (T) => Success<T>;

 isSuccess: true;
 isFailure: false;

 get: (void) => T;
 map: <Z>(T => Z) => Success<Z>;
}

NOTE In this appendix, I’m using a simple and concrete type definition of
map. Theoretically, map should be defined generically for all types, also known
as a Higher-Kinded Type (HKT), used in functional languages such as Has-
kell. HKTs require a powerful type system and are beyond what you can do
with Flow and similar JavaScript libraries.

You may notice some weird annotations enclosed in comparison operators, such as <T>.
These generic or polymorphic types occur often in software, especially when dealing with
data structures and the Algebraic Data Type (ADT) pattern. Notice that map accepts a
function (T => Z) and returns Success.

 If you were to provide anything other than a function to map, the type checker
would bark at you:

Listing B.4 Static-typing a Success functor

Unary type
constructor

map is structure-preserving. It accepts
a function and returns an instance of
the same type (Success in this case).

318 APPENDIX B Typed JavaScript<T>
const fn = 'foo';
success.map(fn).get();

Cannot call success.map with fn bound to the first parameter because string
is incompatible with function type.

The type system infers from its right-side value that fn is a string. This code caught
that I was trying to use that value as a function.

B.3.5 Generic types

Generic programming is incredibly powerful and enables any unknown type (usually
known as T) to be used as a parameter to some algorithm. The algorithms you write
might involve using different types of data structures, such as collections or ADTs, to
be used as containers for the type of data you’re dealing with. A data structure that
accepts a type parameter is known as a parameterized type.

 Normally, when you code JavaScript (or any language, for that matter), you should
stick to best practices to guide your coding effort. One example is creating arrays. An
array, by definition, should be an indexed collection of like-typed items. But nothing
prevents you from inserting elements of different types (other than the dreadful effort
of writing the code to process this array). An array like this one is valid JavaScript:

['foo', null, block, {}, 2, Symbol('bar')]

I hate to see the function mapped to this array, as it probably will contain lots of
if/else conditions trying to handle every type known in JavaScript. A type signature
for this type of array would be Array<mixed>, which is unbounded and accepts any
mix of types available in the language. Types are about restrictions, and in this case,
restrictions are good.

 Good JavaScript developers rarely mix types in the same array object, unless per-
haps to create pairs of objects. Most of the time, we stick to the same type. How can
you enforce this practice? You can set boundaries on the types of objects you accept.
You could define an array of strings

const strs: Array<string> = ['foo', 'bar', 'baz'];

or an array of Block objects:

const strs: Array<Block> = [genesis, block1, block2];

At times, however, you don’t know the type of the items you’ll receive, but you want to
benefit from type safety. Suppose that we call this type T. Let’s discuss an example with
an ADT. A Validation container that can lift any type can be defined as Validation<T>,
and the success branch would inherit this type as well (Success<T>):

class Success<T> {
 static of: (T) => Success<T>;

319Type annotations
 isSuccess: true;
 isFailure: false;

 get: (void) => T;
 map: <Z>(T => Z) => Success<Z>;
}

Notice that I am passing the type parameter to key APIs such as of, get, and map. This
technique adds type checking to every aspect of this API. Here’s an example:

const two: Success<number> = Success.of('foo');

Cannot assign Success.of(...) to two because string is incompatible with
number

Unfolding the container is checked as well:

const two: Success<string> = Success.of('2');
Math.pow(two.get(), 2);

Cannot call Math.pow with two.get() bound to x because string is incompatible
with number.

Here’s an example that shows you a type violation on a mapped function:

const success: Success<number> = Success.of(2);
success.map(x => x.toUpperCase()).get();

Cannot call x.toUpperCase because property toUpperCase is missing in Number.

NOTE You may have noticed that the type checker sometimes uses the primi-
tive name of a type (number) or the wrapped version (Number). This situation
happens when the violation involves accessing a property. Because primitives
don’t have properties, JavaScript would attempt to wrap the primitive auto-
matically before invoking a method such as toUpperCase(). In this case, the
Number wrapper type doesn’t declare that function.

Furthermore, the type checker can perform deep checks by capturing type informa-
tion in those parameters and applying it to the flow of your code. In the case of map

map: <Z>(T => Z) => Success<Z>

two type parameters are bound in this signature: T and Z. T is the type of the con-
tainer’s value—number, in this case. Z stores the result and is inferred from the struc-
ture of your code. In this case, the type checker sees that toUpperCase() is a method
that does not appear in the shape of type Number and alerts you accordingly.

 To show you the reach of the type checker, suppose that you were to map a second
time. The environment you had on the first map call would transfer to the second call.

320 APPENDIX B Typed JavaScript<T>
Z would send its type into T, and the result would be captured once more by Z. Here’s
an example:

success.map(x => x.toString()).map(x => x ** 2);

Cannot perform arithmetic operation because string is not a number.

Figure B.1 traces the inference process.

As you can see in figure B.1, after the value is converted to a string on the first call to
map, the second call fails because x gets bound to string before the code attempts to
perform arithmetic.

 Another compelling use case for generic programming is streams. Providing type
semantics to stream-based code gives you the chaining power of observables as well as
code correctness applied to your business logic. Before we look at an example, as a
fun little exercise, let’s use the annotations we’ve learned so far to describe the main
interfaces of a stream. Because the Observable class is already loaded, we’ll use the
convention of prefixing interfaces with I. So we get IObservable, Observer, and
ISubscription, using a mix of generic interfaces, object, and function types:

type Observer<T> = {
 next: (value: T) => void,
 error?: (error: Error) => void,
 complete?: () => void
}

interface IObservable<T> {
 skip(count: number): IObservable<T>;
 filter(predicate: T => boolean): IObservable<T>;
 map<Z>(fn: T => Z): IObservable<Z>;

T: number

success: Success<number>

.map(x ═> x.toString())

.map(x ═> x ** 2)

Cannot perform arithmatic operation
because string is not a number

Z: string

T: string

Figure B.1 The sequence of map calls, tracing the flow of types to find
an invalid operation (exponentiation) being performed on a string

321Type annotations
 reduce<Z>(acc: (
 accumulator: Z,
 value: T,
 index?: number,
 array?: Array<T>
) => Z, startwith?: T): IObservable<T>;
 subscribe(observer: Observer<T>): ISubscription;
}

interface ISubscription {
 unsubscribe(): void;
}

With the variable having the type information IObservable, there’s no need to fol-
low the $ suffix convention any longer. There’s no doubt that you’re working with
an observable. In this example, the type T bound to number flows through the
entire Observable declaration, and the type checker can test it at every step of the
pipeline:

const numbers: IObservable<number> = Observable.of(1, 2, 3, 4);

numbers.skip(1)
 .filter(isEven)
 .map(square)
 .reduce(add, 0)
 .subscribe({
 next: :: console.log
 });

The type system analyzes the sequence of calls and checks for compatibility between
the observable operators and your business logic. Suppose that you inadvertently pass
an incompatible function to one of the operators:

const toUpper = x => x.toUpperCase();

//...

numbers.skip(1)
 .filter(isEven)
 .map(toUpper);

Cannot call x.toUpperCase because property toUpperCase is missing in Number

You can create another flow diagram like figure B.2. The final type annotation I’ll dis-
cuss is related to what we learned about in chapter 5.

322 APPENDIX B Typed JavaScript<T>
B.3.6 Union types

A union type or choice type (such as Validation) signature defines a type that can
be in one of a finite set of states at a time. You may know this type as an enumeration
or enum. The Block class declares a parameter of type Difficulty. This type is a
number that controls the amount of effort that the proof-of-work algorithm is
required to spend. With a difficulty value of 5, for example, completing the proof of
work could take hours, if not days. You’d definitely want to control the range of pos-
sible values.

 To describe the possible values that this type can take, use a logical OR (|)operator,
symbolizing union:

type Difficulty = 0 | 1 | 2 | 3;

A value of 0 turns off proof of work and completes instantly. As you turn the knob
higher, proofOfWork takes a lot more effort to run.

 Another common use case represents log levels like this:

type LogLevel = 'DEBUG' | 'INFO' | 'WARN' | 'ERROR';

Enumerations work seamlessly with switch statements, as the next listing shows.

const level: LogLevel = getLogLevel()

switch (level) {
 case 'DEBUG':
 //...
 break

Listing B.5 Using different log levels with an enum and a switch statement

count:number

numbers: IObservable<number>

Cannot call x.toUpperCase because property
toUpperCase is missing in Number

T:number .skip(1)

T ═> boolean

T:number .filter(isEven)

T:number .map(toUpper)

T:string ═> Z:string

Figure B.2 Tracing the flow of types
through the observable stream. Mapping
toUpper causes a violation, as the
expected event type is number.

323Type annotations
 case 'INFO':
 //...
 break
 case 'WARN':
 //...
 break
 case 'ERROR':
 //...
 break;

}

We can also use union types on custom objects. In chapter 5, we implemented the
Validation ADT, which is a disjoint union with two branches: Success and Failure.
Like Difficulty, the Validation object can be in only one of these two states. We can
symbolize that condition in the same way. Here’s Validation with both of its branches:

class Success<T> {
 static of: (T) => Success<T>;

 isSuccess: true;
 isFailure: false;

 get: (void) => T;

 map: <Z>(T => Z) => Success<Z>;
}

class Failure {
 isSuccess: false;
 isFailure: true;

 get: (void) => Error;

 map: (any => any) => Failure;
}

type Validation<T> = Success<T> | Failure;

As you can see, the Failure case is a much simpler type because it’s not meant to carry a
value, which is why I used the keyword <any> to represent no type information needed.

 The union operator is modeling two disjointed branches of code (figure B.3).

There’s no need for a default
clause because you’re
guaranteed that this variable
can be in no other state.

Validation

Success

Failure

Allows functions to run

OR

Skips functions

Figure B.3 Union type annotations model a logical OR describing two disjointed control flows.

324 APPENDIX B Typed JavaScript<T>
You can use this type directly or indirectly in our Block class:

class Block {

 // ...

 isValid(): Validation<Block> {

 //...
 }
}

This variation is equivalent and works the same way:

class Block {

 // ...

 isValid(): Success<Block> | Failure {

 //...
 }
}

In my experience, types with classes, interfaces, objects, functions, generics, and unions
are the ones that occur most often in day-to-day code and are likely to be the first
included in any future proposal. But you can use many other type annotations. I
encourage you to read about this technology on your own if you find it interesting. A
good article to start with is at http://code.sgo.to/proposal-optional-types. Knowing
what signatures are and what they mean will still be important for communicating effi-
ciently about how functions are used and composed with the rest of your code. The
good news is that type information is not an all-or-nothing route. You can start to add
types progressively as you become more comfortable with them.

 The JavaScript community has been active in this regard, developing everything
from third-party extension libraries such as Flow to alt-JS languages such as Elm and
PureScript. If you’re intrigued, some early proposals sitting in stage 0 revive the types
conversation that left off in the days of ECMAScript 4:

■ http://mng.bz/MXDn
■ http://mng.bz/aovB

Feel free to dig into these proposals if you’re interested in learning more.

http://mng.bz/MXDn
http://mng.bz/aovB
http://code.sgo.to/proposal-optional-types

index
Symbols

[[DefineOwnProperty]] 53
[[Get]] 212, 215
[[Prototype]] 27, 29, 33
[[Scope]] 90
[[Set]] property 53–54
#precisionRound method 40

A

abstract operation 203
add function 91, 93, 98
address parameter 110
ADTs (Algebraic Data Types)

kinds of 131–132
record type 131–132

AMD (Asynchronous Module Definition) 159
applyIfNotNull function 118
arguments of a function 95
Array API 121
Array method 10, 99, 118, 120, 122, 124, 127, 131,

201–202, 273, 276, 302
Array object 262
Array#{map, filter, reduce} method 130
Array#concat method 199
Array#filter method 286
Array#flatMap method 109
Array#map method 116, 125–126, 202
Array#pop method 126
Array#reduce method 85
Array.of method 119–120
Array.prototype method 75
Array.prototype.flat 108, 122
Array.prototype.flatMap 122–123

Array.prototype.map(f) method 110
Array.prototype.pop method 119
assemble function 88–89, 96–97
associativity 128
async function 177, 256, 258–259, 266
async generators 269–272
async keyword 250
async/await feature 14, 20, 194, 249–252

async iteration 252–257
top-level await 257–259

Asynchronous Module Definition (AMD) 159
@@asyncIterator symbol 210, 255, 259
autohashed blocks 216–217
await 177, 253, 255, 258–259

B

babel-cli 307
Babel, configuring 306–307
backpack 8
balance method 106–107
balanceOf method 109
BigInt function 218
bind operator 5, 88
BitcoinService function 165, 167, 173, 194, 242
BitcoinService.serializeLedger function 196
Block class 57, 66, 100–101, 146, 149, 164,

173–174, 180, 194, 196, 207, 245–246, 263,
272–273, 311, 314–315, 318, 322, 324

Blockchain class 46–47, 57, 66, 147, 149,
206–207, 263, 267, 271, 289, 298–300,
302–303, 315

blockchain sample application 16–19
BlockchainApp 161, 164
block.difficulty property 192–193
325

INDEX326
C

calculateHash method 29, 31–32, 56–57, 82,
87–88, 95–96, 98–99, 163–164

callback hell 226
callback pattern 226
callback queue 227
chain$RevocableProxy.revoke method 218
checkIndex method 140
checkLimit method 219–220
checkTampering method 140, 180
checkTimestamp method 140
Choice 131
CJS (CommonJS) 159
class keyword 36–37, 40, 137
class types 314–315
class-based inheritance 36–41
closures 90–100
code correctness 310
cognitive load 158
CommonJS (CJS) 159
complete method 284, 290–291
compose 82, 84–85, 94–95, 97–98, 103, 105,

110–111, 114, 116, 123–124, 129, 138, 143,
153–154, 197, 214, 244, 293

compose2 82, 85, 89, 144
composeM 143, 154
composeM2 144
composition 62, 125
computeBalance method 107, 109
compute_balance module 176
computeCipher method 88–89, 96–99
concat 199
concatenative object extension 54, 57
configurable 26, 52
constructor functions 30–36

functions as templates 30–31
sharing properties by using constructors 31–36

constructor property 126
contextual composition 123
contextual validation 131–150

choices 132–133
composing with monads 138–141
kinds of ADTs 131–132
point-free coding 144–146
reducing complex data structures 146–149
third-party integration 149–150
Validation monad 134–137, 142–143

control protocols 192–196
copy operation 6
count function 9, 84–85, 191
countBlocksInFile method 105–106, 138, 242,

249–250, 253
Counter object 218–219
countWords method 85

countWordsInFile method 84–85, 105
currency property 316–317
curry function 91, 93–95, 97–99, 104, 110–113,

143, 186, 244, 313
currying and closures 90–100

composition and 96–100
curried function application 91–95

D

data locality 231
data propagation 279
data streams 273–278

defined 274–275
implementing streamable array 275–278

dataStream 255
Date object 203
DateTime object 100
dead-code elimination 178–180
decode function 84, 92, 138
decomposing complex code 87–90
default property 173, 176, 203
DEFAULT_ALGO_SHA256 function 61
delay operator 285
DelayedPromise class 201
delete method 19, 26
differential inheritance 6, 29–30
Difficulty object 322–323
discriminated union 132
displayTransaction method 32
done property 256, 263, 305
doSomething function 51, 53
doWork function 134
dynamic binding 150–153
dynamic importing 175–177
dynamic introspection 211–218

autohashed blocks 216–217
proxy objects 212–215
Reflect API 215–216
revocable proxies 217–218

dynamic module system 167
dynamic object extension 57
dynamic streamification 300–305

E

effectful functions 78
effects 117
enroll method 6
enumerable data descriptor 188
Enumerable interface 205
enumerable: true property 52
enumeration 322
equals method 101
equals property 316

INDEX 327
error method 284, 293–294
Error type 248
error-first callbacks 230
ESM (ECMAScript module) 12, 157–182,

185
benefits of 178–181

dead-code elimination and tree-shaking
178–180

faster property lookups 180–181
type-friendliness 181

exporting 172–174
multivalue exporting 173
proxying 174
single-value exporting 172–173

importing 174–177
dynamic importing 175–177
multivalue importing 174–175
package managers 175
single-value importing 174

.mjs file extension 177–178
modular programming 158–160
module patterns 160–167

factory functions 165–167
IIFE mixins 164
IIFEs 163–164
object namespaces 161–163

path specifiers 171–172
static vs. dynamic module systems 167–170

EventEmitter 276
EventListener object 281
executor function 228
explicit object links 44–45
export keyword 12, 168, 170
exporting 172–174

multivalue exporting 173
proxying 174
single-value exporting 172–173

exports variable 177
_.extend 40
extends 36–37, 40, 137
extracted function 110

F

factory functions 165–167
Failure 134–136, 139, 142, 148, 154, 231, 255,

268–269, 323
filter operator 286
flat method 75, 109, 122, 128–129
flatMap 10, 75, 109, 114, 116, 122–124, 127–129,

131, 134, 142–143, 148, 154, 264
fluent chaining 234–242

broken chains 236–237
fully linked chains 235
nested chains 237–242

Foo 44
foo module 179
FP (functional programming) 7, 74
F.prototype object 31
fromNullable function 139
fs library 169, 229
fs.createReadStream function 272, 275
fs.ReadStream function 275
function combinators 98
function types 317–318
functional programming 73–113

currying and closures 90–100
composition and 96–100
curried function application 91–95

functional composition 81–90
decomposing complex code 87–90
side effects 84–87

functions as data 76–78
immutable objects 100–104
imperative programmming vs. 79–81
native function chains 111–113
point-free coding 104–106
rules of 78–79
transformation from imperative to

106–111
functional programming (FP) 7, 74
functions 7–12

as data 76–78
as templates 30–31
constructor functions 30–36
contextual validation with higher-order

functions 131–150
factory functions 165–167

Functor mixin 125–126, 130, 138–139, 142,
202–203, 317

Functor.map 230, 233, 244, 279, 317
functors 10, 124–127

G

generateBlocksFromFile function
270, 272

Generator object 208, 266–267, 305
generators 266–272

async generators 269–272
creating iterable objects 267–269
representing push streams with

290–295
returning or yielding 266–267

generic types 318–321
get method 125, 212–213, 215, 219
getAddress method 6
getOwnPropertyDescriptors 215
getOwnPropertySymbols 215
global registry 189–190

INDEX328
H

has method 213–215
HasBread object 55
hash property 89, 145
HasHash mixin 57–58, 60, 62, 67, 69, 79, 82,

95–96, 99–100, 164, 173, 194
hashPrefix 193, 244
HashTransaction class 29–32, 38, 40, 49
HasSignature mixin 60–62
HasValidate mixin 217
HasValidation mixin 62, 134, 146, 207, 263, 272
higher-kinded composition 114–154

Array.prototype.flat 122
Array.prototype.flatMap 122–123
contextual validation 131–150

choices 132–133
composing with monads 138–141
kinds of ADTs 131–132
point-free coding 144–146
reducing complex data structures

146–149
third-party integration 149–150
Validation monad 134–137, 142–143

functors 124–127
map/compose correspondence 123–124
method extraction and dynamic binding

150–153
monads 127–131

higher-order function 76
hint parameter 203
HKT (Higher-Kinded Type) 317
homoiconic languages 186

I

Id class 120–121, 123–127, 130–131
Id#get method 126
identity function 120, 219
IIAFE (Immediately Invoked Async Function

Expression) 257
IIFEs (Immediately Invoked Function

Expressions) 163–164
immutable objects 100–104
imperative programmming

functional programming vs. 79–81
transformation to functional

programming 106–111
implicit object links 43–44
import function 176
import keyword 12, 168, 170, 176
importing 174–177

multivalue import 174–175
package managers 175
single-value import 174

in operator 214
index property 216
indexOf method 276
inheritance 23
inheritance-based object modeling 23–41

class-based inheritance 36–41
constructor functions 30–36

functions as templates 30–31
sharing properties by using constructors

and prototypes 31–36
prototypal inheritance 24–30

differential inheritance 29–30
property resolution process 27–29

inherits method 36
init method 46–47, 50
inspect method 196
interface types 315–316
invariant 312
IObservable class 320–321
@@isConcatSpreadable 199–200
isFunction 92
ISubscription class 320
isValid method 75, 141, 143, 146, 148
iterables and iterators 262–266

examples of 263–266
iterable protocol 262
iterator protocol 263

@@iterator 205–210
Iterator object 252, 263

J

JavaScript 1–20
blockchain sample application 16–19
code 12
data 13–16
evolution of 4–5
functions 7–12
objects 5–7
types for 308–324

benefits and drawbacks of
310–314

type annotations 314–324
jQuery object 127
JSON.parse method 105
JSON.stringify method 29, 96, 197

L

lazy evaluation 83
ledger 106, 110, 173
ledger.validate method 218
left property 209
left.getOrElse(5) method 269
lenses 103

INDEX 329
linear async flows 225–259
architecture 226–228
async/await feature 249–252

async iteration 252–257
top-level await 257–259

promise combinators 244–249
Promise.all 246–247
Promise.allSettled 247–248
Promise.any 248–249
Promise.race 247

promises 228–244
data locality 231
fluent chaining 234–242
not algebraic 231–234
real-world examples 242–244

linearization 63–65
linked, compositional object models 42–70

mixins 54–66
anatomy of 60–63
applying shared mixins to multiple

objects 66–70
composing objects using Object.assign and

spread operator 65–66
multiple inheritance and linearization 63–65

object links 43–45
explicit 44–45
implicit 43–44

Object.assign API 50–54
assignment vs. definition 53–54
using 51–53

OLOO pattern 45–50
live code bindings 169
local registry 188–189

M

map interface 123–124
Map object 262
map operator 283–286
map/flatMap 13
metaprogramming 183–222

common uses of 184–186
dynamic introspection and weaving 211–218

autohashed blocks 216–217
proxy objects 212–215
Reflect API 215–216
revocable proxies 217–218

method decorators 218–220
symbols 186–188

practical application of 190–197
symbol registries 188–190
well-known 198–210

method decorators 218–220
method extraction 150–153
method fusion 129

mineNewBlockIntoChain method 194
minus method 103
minus property 316
mixins 43, 54–66

anatomy of 60–63
applying shared mixins to multiple objects

66–70
composing objects using Object.assign and

spread operator 65–66
multiple inheritance and linearization 63–65

.mjs file extension 177–178
modular programming 158–160

module patterns 160–167
factory functions 165–167
IIFE mixins 164
IIFEs 163–164
object namespaces 161–163

static vs. dynamic module systems 167–170
module variable 177
Monad mixin 128, 130–131, 142
Monad.flatMap 233, 244, 279
monads 127–131

composing with 138–141
point-free coding with 144–146
Validation monad 134–137, 142–143

monomorphic functions 313
multivalue exporting 173
multivalue importing 174–175

N

native function chains 111–113
nested chains 237–242
new keyword 5, 31, 33–36, 120, 165, 187
newBlock method 267–268
next method 209, 263, 265–266, 269, 275, 278,

283–284, 286, 290–291, 305
next(value) method 277–278
nominal typing 314
nonce property 194–195, 216, 244
NoopFunctor mixin 139
NoopMonad mixin 142
NPM 175
null value 115, 117–118, 133–134, 313
Number object wrapper 310
number type 103, 181, 203, 218, 315, 319,

321–322

O

obj :: method 152
obj parameter 65, 95, 188
object links 43–45

explicit 44–45
implicit 43–44

INDEX330
object namespaces 161–163
object types 316–317
Object#hasOwnProperty method 52
Object#isPrototypeOf method 28, 103
Object#toString method 203
Object#valueOf method 203
Object.assign API 50–54

assignment vs. definition 53–54
composing objects using spread operator

and 65–66
using 51–53

Object.assign method 6, 26, 42, 50–55, 58–60,
63–65, 70, 102, 188, 289, 302

Object.create method 5, 25–27, 32, 42, 45,
50, 100

Object.create(Blockchain) method 46
Object.create(null) method 102
Object.create(Transaction.prototype)

method 192
Object.defineProperty method 53, 188, 215
Object.freeze method 102–103
Object.fromEntries method 99
Object.getOwnPropertyDescriptors method 185
Object.getOwnPropertyNames method 185, 187
Object.getOwnPropertySymbols API 191
Object.getOwnPropertySymbols method 185, 187
Object.getPrototypeOf method 28, 185
Object.keys method 26
Object.prototype method 27, 103
objects 5–7

immutable 100–104
inheritance-based object modeling 23–41
linked, compositional object models 42–70
streamifying 297–300

Objects Linked to Other Objects (OLOO) 42,
45–50

Object.seal method 102–103
Object.setPrototypeOf method 28, 30
obj.toArray() 147
@@observable 297
Observable API 278–305

dynamic streamification 300–305
observable mixin extension 288–290
observables

creating custom 281–282
defined 279–281

pipeable operators 295–297
reactive toolkit 282–288

filter operator 286
map operator 283–286
reduce operator 286
skip operator 287–288

representing push streams with generators
290–295

streamifying objects 297–300

Observable function 15, 153, 260, 262, 274, 278,
280–284, 288, 290, 293, 297, 302, 304–305,
320–321

Observable.{of, from} function 281
Observable.from function 279, 297
Observable.fromGenerator function 291
Observable.of function 280, 283
Observable.of(...) function 297
Observable.prototype function 283
observables 5
Observer object 278, 280–281, 293, 320
observer.complete method 298
OLOO (Objects Linked to Other Objects) 42,

45–50
on method 276
onlyIf function 78
optionally (pluggable) typed 310
orElse function 78

P

Pair object 132, 200, 209, 297
parameterized type 318
parent property 52
path specifiers 171–172
pipe operator 111–112, 197, 288
pipeable operators 295–297
pipeline operator 5
Point object 100
point-free coding 104–106, 144–146
polymorphic types 313, 317
precomputedHash operator 133
preserves type 81
previousHash property 17, 145, 216, 246
private class fields 5
process.hrtime API 217–218
programmable commas 146
Promise API 153, 225–226, 228, 250, 257, 259,

261, 304
promise combinators 244–249

Promise.all 246–247
Promise.allSettled 247–248
Promise.any 248–249
Promise.race 247

Promise object 13, 15, 131, 231–232, 234, 236,
238, 240, 247, 249–251, 253, 255, 266, 269,
275, 305

Promise#catch 234, 237–240, 248, 250, 255, 257
Promise#finally 241
Promise#then 229, 233–234, 238, 244, 248–250,

255, 257
Promise.all 246–248
Promise.allSettled 247–248, 259
Promise.any 247–249, 259
Promise.race 247–248

INDEX 331
promises 228–244
data locality 231
fluent chaining 234–242

broken chains 236–237
fully linked chains 235
nested chains 237–242

not algebraic 231–234
real-world examples 242–244

proof of work 18
proofOfWork function 18, 193–194, 245,

311, 322
proofOfWorkAsync function 245
prop function 92, 94–95, 98, 185
prop('funds') function 93
properties

assignment vs. definition 53–54
ESMs and faster lookups 180–181
resolution process 27–29
sharing by using constructors and

prototypes 31–36
props function 94, 99, 185
proto object 25
__proto__ property 27–28, 33–34, 41, 43, 45
prototypal inheritance 24–30

differential inheritance 29–30
property resolution process 27–29
sharing properties by using prototypes

31–36
prototype pollution 6
prototype property 32–34, 40, 47, 65, 192
prototype, inheritance vs. 23
Proxy API 211, 304
Proxy object 12, 184, 212, 215, 218
proxy objects 212–215
proxying 174
pure functions 8, 76, 78
push generator 278
push method 300
PushArray class 276, 280, 298
pushProxy 300
pyramid of doom 226

Q

Queue 131

R

reacting 276
Reactive Extension (Rx) 284
ReactiveExtensions mixin 288
read function 84, 138
Readable 291
readFile method 230
realms 190

Record type 131–132
reduce API 75, 89, 264
reduce function 110, 144, 148
reduce operator 286
reduceRight operator 111
ReferenceError class 313
referential transparency 78
Reflect API 12, 184, 211, 215–216, 304
Reflect.ownKeys API 191
require API 180
require function 168, 176
return method 178, 290
reverse API 121
reverse method 76
revocable proxies 217–218
revoke method 218
right property 209
right-biased 139
Rx (Reactive Extension) 284

S

SafeIncrementor 152
safeSquare 78
serialization 196–197
set method 215
Set object 262
setInterval method 280
setTimeout method 228
shortcut fusion 129
side effects 84–87
single-value exporting 172–173
single-value importing 174
skip operator 287–288, 292, 297
sort API 121
sort method 76
@@species 200–203

documenting closure of operations
202–203

information hiding 201–202
split function 9, 84–85, 105
spread operator 65–66
square function 78, 302
static method 40
status property 248
Stream APIs 14
stream.Readable 275, 291
streams programming 260–305

data streams 273–278
defined 274–275
implementing streamable array 275–278

generators 266–272
async generators 269–272
creating iterable objects 267–269
returning or yielding 266–267

INDEX332
streams programming (continued)
iterables and iterators 262–266

examples of 263–266
iterable protocol 262
iterator protocol 263

Observable API 278–305
creating custom observables 281–282
dynamic streamification 300–305
observable mixin extension 288–290
observables, defined 279–281
pipeable operators 295–297
reactive toolkit 282–288
representing push streams with

generators 290–295
streamifying objects 297–300

String object wrapper 310
subscribe method 276–277, 280, 282–283, 290
Subscription object 275, 280–281
Success 134–136, 138–139, 142–143, 148, 154,

231, 268, 317, 323
Success.of 255
sum type 132
switch statements 133, 322
Symbol API 187
Symbol function 181, 187–189, 198, 221
symbol registries

global registry 189–190
local registry 188–189

Symbol('foo') property 188
Symbol('name') property 192
Symbol.asyncIterator function 255–256, 276,

297, 305
Symbol.for function 188–189
Symbol.for('toJson') function 197
Symbol.for('version') function 197
Symbol.for(key) function 190
Symbol.isConcatSpreadable function 200
Symbol.iterator function 147, 206, 262–265,

267–268, 276, 297, 305
Symbol.keyFor method 189
Symbol.keyFor(key) function 190
Symbol.observable method 279, 297, 302, 305
symbols 186–188

practical application of 190–197
hidden properties 190–191
interoperability 191–196
serialization 196–197

symbol registries 188–190
well-known 198–210

@@isConcatSpreadable 199–200
@@iterator 205–210
@@species 200–203
@@toPrimitive 203–205
@@toStringTag 198–199

Symbol.species method 200

Symbol.toPrimitive method 203
Symbol.toStringTag method 198
symFoo 188
SyntaxError class 39

T

then method 288
this 31, 34, 70, 88, 96, 99, 107, 151, 164–166, 241,

262, 296–297
this.calculateHash 216
this.constructor.of 126
throw expressions 5, 183, 193, 219
timestamp property 216
toJson method 196–197
@@toPrimitive 203–205
toString method 92, 101, 192, 198–199, 203
toString property 103, 316
@@toStringTag 198–199
toStringTag method 199
toUpperCase() method 319
traceLogHandler 216
Transaction class 27, 31, 36–37, 40, 47, 54, 57–59,

62, 65–66, 100–101, 149, 161, 163–164, 168,
173, 192, 207

Transaction object 26, 48, 263, 315
transaction object 29
transactionId value 29, 101
Transaction.prototype 32
transferFunds 166
tree-shaking 178–180
try/catch 116
type-friendliness of ESMs 181
typeclass 130
TypeError 27, 32, 313

U

union types 322–324
unsubscribe method 277, 280, 282, 284, 298
UpperCaseFormatter 44
url property 178
use method 57
util library 35
util.inherits method 35, 40
util.promisify method 230

V

validate API 146
validate function 148, 208, 216–217, 219, 272
Validation 134–135, 137, 139, 141–144, 146,

148–149, 153, 168, 202, 204, 230, 232, 255,
268, 283, 293, 318

Validation monad 134–143

INDEX 333
Validation#map 202
Validation.Failure 148
Validation.map 255
Validation.of 283
validationResult 148
Validation.Success 148, 317
validBlocks$ 293
value property 248, 263, 305
valueOf method 101, 103, 203
values method 207
version property 195

W

WeakMap 262
WeakSet 262

weaving 211–218
autohashed blocks 216–217
proxy objects 212–215
Reflect API 215–216
revocable proxies 217–218

window object 57
WindowEventHandlers mixin 57
WindowOrWorkerGlobalScope mixin 57
with statement 19
workers 227
worker_threads module 245
writable attribute 52

Y

yield 209, 267, 290

For ordering information go to www.manning.com

RELATED MANNING TITLES

Grokking Simplicity
by Eric Normand

ISBN 9781617296208
550 pages, $39.99
April 2021

Functional Programming in JavaScript
How to improve your JavaScript programs using
functional techniques
by Luis Atencio

ISBN 9781617292828
272 pages, $35.99
June 2016

Secrets of the JavaScript Ninja, Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN 9781617292859
464 pages, $35.99
August 2016

The Manning Early Access Program

Don’t wait to start learning! In MEAP, the Manning Early Access Program, you can read

books as they’re being created and long before they’re available in stores.

Here’s how MEAP works.

• Start now. Buy a MEAP and you’ll get all available chapters in PDF, ePub, Kindle,

and liveBook formats.

• Regular updates. New chapters are released as soon as they’re written. We’ll

let you know when fresh content is available.

• Finish faster. MEAP customers are the first to get final versions of all books!

Pre-order the print book, and it’ll ship as soon as it’s off the press.

• Contribute to the process. The feedback you share with authors makes the end

product better.

• No risk. You get a full refund or exchange if we ever have to cancel a MEAP.

Explore dozens of titles in MEAP at www.manning.com.

A new online reading experience

liveBook, our online reading platform, adds a new dimension to your Manning books,

with features that make reading, learning, and sharing easier than ever. A liveBook

version of your book is included FREE with every Manning book.

This next generation book platform is more than an online reader. It’s packed with

unique features to upgrade and enhance your learning experience.

• Add your own notes and bookmarks

• One-click code copy

• Learn from other readers in the discussion forum

• Audio recordings and interactive exercises

• Read all your purchased Manning content in any browser, anytime, anywhere

As an added bonus, you can search every Manning book and video in liveBook—even

ones you don’t yet own. Open any liveBook, and you’ll be able to browse the content and

read anything you like.*

Find out more at www.manning.com/livebook-program.

*Open reading is limited to 10 minutes per book daily

PATTERNS OF COMPOSABLE SOFTWARE

IN THE JOY OF JAVASCRIPT

4. Compose promises to simplify
async programming (chapter 8).

HasHash

HasSignature

HasValidation

1. Compose the structure of
simple objects (mixins) to
model complex objects (chapter 3).

2. Compose (pure) functions together to
implement complex logic (chapter 4).

Transaction
Class

3. Compose functors (ADTs) to represent
computational chains (chapter 5).

5. Compose observables to manage (potentially infinite)
synchronous or asynchronous streams of data (chapter 9).

Output events

Input events

operator function

map(fn)

fn: –>

read

decode

JSON.parse

count
Application

countBlocksInFile

=

otherFunctions

=countBlocksInFile

F

'aabbcc'

.map(unique)

F

['a','b','c']

F

'abc'

.map(join)

F

'ABC'

.map(toUpper)

.get() = 'ABC'F.of('aabbcc')

.then(onSuccess)

.then(,onReject)

.catch(onReject)

Fulfill

Reject

R
eturn

Return

pending

Fulfil
l

Reject

pending

Luis Atencio

ISBN: 978-1-61729-586-7

J
avaScript is at the heart of web applications on the
browser side and, via the popular Node.js runtime, it
often powers the server side too. Simply put, the web

runs on JavaScript.

The Joy of JavaScript introduces techniques that turn
JavaScript programmers into JavaScript pros. You’ll work
with cutting edge APIs, language features, and coding
styles to tackle tricky problems in an elegant manner.
Along the way, you’ll practice good object design, drive
business logic w ith functional thinking, and untangle
complex data fl ows.

What’s Inside
● JavaScript’s objects and module system
● Working with higher order functions
● Identifying and creating composable software
● Preparing for upcoming JavaScript features

Written for experienced and passionate JavaScript
developers.

Luis Atencio is a software engineer for Citrix Systems, author
of Manning’s Functional Programming in JavaScript, and
co-author of Manning’s RxJS in Action.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$39.99 / Can $52.99 [INCLUDING eBOOK]

The Joy of JavaScript

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Goes beyond purely
functional programming
concepts and covers every
topic a developer needs to

know while reading or writing
JavaScript in 2020.”—Gleb Bahmutov, Cypress.io

“The actual joy here was
reading it! The defi nitive

guide to becoming a
 JavaScript professional.”—Ubaldo Pescatore

Generali Business Solutions

“Teaches modern JavaScript
features and techniques with
concise descriptions and code

samples that feel like they came
from a real application.”—Nate Clark
Base Camp Coding Academy

“A must-read for every
JavaScript developer wanting

 to upskill.”—Lora Vardarova, CoGo

See first page

	The Joy of JavaScript
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	Part 1: Objects
	Part 2: Functions
	Part 3: Code
	Part 4: Data

	About the code
	Other online resources

	about the author
	about the cover illustration
	1 JavaScript reloaded
	1.1 Evolving JavaScript
	1.2 Objects
	1.3 Functions
	1.4 Code
	1.5 Data
	1.6 Sample application: Blockchain
	Summary

	Part 1—Objects
	2 Inheritance-based object modeling
	2.1 Reviewing prototypal inheritance
	2.1.1 Property resolution process
	2.1.2 Differential inheritance

	2.2 Constructor functions
	2.2.1 Functions as templates
	2.2.2 Sharing properties by using constructors and prototypes

	2.3 Class-based inheritance
	Summary

	3 Linked, compositional object models
	3.1 Types of object links
	3.1.1 Implicit
	3.1.2 Explicit

	3.2 OLOO
	3.3 Understanding Object.assign
	3.3.1 Object.assign uncovered
	3.3.2 Assignment vs definition

	3.4 Assembling objects using mixin composition
	3.4.1 Anatomy of a mixin
	3.4.2 Multiple inheritance and linearization
	3.4.3 Composing objects using Object.assign and the spread operator

	3.5 Applying shared mixins to multiple objects
	Summary

	Part 2—Functions
	4 Writing composable, pure code
	4.1 What is functional programming?
	4.1.1 Functions as data
	4.1.2 The functional way

	4.2 Functional versus imperative at a glance
	4.3 Composition: The functional way
	4.3.1 Working with side effects
	4.3.2 Decomposing complex code

	4.4 Currying and closures
	4.4.1 Curried function application
	4.4.2 The curry and composition dynamic duo

	4.5 Working with immutable objects
	4.6 Point-free coding
	4.7 Imperative to functional transformation
	4.8 Native function chains
	Summary

	5 Higher-kinded composition
	5.1 Closing over data types
	5.2 New Array APIs: {flat, flatMap}
	5.2.1 Array.prototype.flat
	5.2.2 Array.prototype.flatMap

	5.3 The map/compose correspondence
	5.4 Universal contracts
	5.4.1 Functors
	5.4.2 Monads

	5.5 Contextual validation with higher-order functions
	5.5.1 Kinds of ADTs
	5.5.2 Choices
	5.5.3 Modeling success and failure with the Validation monad
	5.5.4 Composing with monads
	5.5.5 Higher-kinded composition with Validation
	5.5.6 Point-free coding with monads
	5.5.7 Reducing complex data structures
	5.5.8 Third-party integration

	5.6 Higher-kinded composition with method extraction and dynamic binding
	Summary

	Part 3—Code
	6 ECMAScript Modules
	6.1 Past state of affairs
	6.2 Module patterns
	6.2.1 Object namespaces
	6.2.2 Immediately Invoked Function Expressions (IIFEs)
	6.2.3 IIFE mixins
	6.2.4 Factory functions

	6.3 Static vs. dynamic module systems
	6.4 ESM basics
	6.4.1 Path specifiers
	6.4.2 Exporting
	6.4.3 Importing
	6.4.4 A new extension in town

	6.5 Benefits of ESM for tooling
	6.5.1 Dead-code elimination and tree-shaking
	6.5.2 Faster property lookups
	6.5.3 Type-friendliness

	Summary

	7 Hooked on metaprogramming
	7.1 Common uses of metaprogramming in JavaScript
	7.2 JavaScript symbols
	7.3 Symbol registries
	7.3.1 Local registry
	7.3.2 Global registry

	7.4 Practical application of symbols
	7.4.1 Hidden properties
	7.4.2 Interoperability
	7.4.3 Serialization

	7.5 Well-known symbols
	7.5.1 @@toStringTag
	7.5.2 @@isConcatSpreadable
	7.5.3 @@species
	7.5.4 @@toPrimitive
	7.5.5 @@iterator

	7.6 Dynamic introspection and weaving
	7.6.1 Proxy objects
	7.6.2 The Reflect API
	7.6.3 Additional use cases

	7.7 Implementing method decorators
	Summary

	Part 4—Data
	8 Linear async flows
	8.1 Architecture at a glance
	8.2 JavaScript as promised
	8.2.1 Principle of data locality
	8.2.2 Are promises algebraic?
	8.2.3 Fluent chaining
	8.2.4 Promises in the wild

	8.3 API review: Promise combinators
	8.3.1 Promise.all
	8.3.2 Promise.race
	8.3.3 Promise.allSettled
	8.3.4 Promise.any

	8.4 async made easy
	8.5 async iteration
	8.6 Top-level await
	Summary

	9 Streams programming
	9.1 Iterables and Iterators
	9.1.1 Iterable protocol
	9.1.2 Iterator protocol
	9.1.3 Examples

	9.2 Generators
	9.2.1 To return or to yield
	9.2.2 Creating iterable objects
	9.2.3 Async generators

	9.3 Working with data streams
	9.3.1 What is a stream?
	9.3.2 Implementing a streamable array

	9.4 Welcoming a new native: Observable
	9.4.1 What is an Observable?
	9.4.2 Creating custom observables
	9.4.3 Building your own reactive toolkit
	9.4.4 Observable mixin extension
	9.4.5 Representing push streams with generators
	9.4.6 Pipeable operators
	9.4.7 Streamifying objects
	9.4.8 Dynamic streamification

	9.5 Closing thoughts
	Summary

	Appendix A—
Configuring Babel
	Appendix B—Typed JavaScript<T>
	B.1 First, what?
	B.2 Benefits and drawbacks of statically typed JavaScript
	B.3 Type annotations
	B.3.1 Class types
	B.3.2 Interface types
	B.3.3 Object types
	B.3.4 Function types
	B.3.5 Generic types
	B.3.6 Union types

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

